Math 475, Fall 2015
Homework 5
Due: Friday, Oct. 16
(1) Define a sequence by

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=3 \\
& a_{n}=8 a_{n-1}-16 a_{n-2} \quad \text { for } n \geq 2 .
\end{aligned}
$$

(a) Express the ordinary generating function $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ as a rational function in x.
(b) Find a closed formula for a_{n}.
(2) Define a sequence of numbers a_{0}, a_{1}, \ldots by

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=2 \\
& a_{n}=-a_{n-1}+2 \sum_{i=0}^{n-2} a_{i} a_{n-2-i} \quad \text { for } n \geq 2 .
\end{aligned}
$$

Find a simple expression for the ordinary generating function $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. (You do not need to find a formula for the a_{n}.)
(3) If $\sum_{n \geq 0} a_{n} x^{n}=\frac{1+x+3 x^{3}}{(1-2 x)^{4}}$, find a formula for the a_{n}.
(4) Let a_{n} be the number of partitions of n in which all of the parts are odd, and each number appears ≤ 3 times. By convention, $a_{0}=1$.

For example, for $n=6$, we get the partitions $\{(5,1),(3,3),(3,1,1,1)\}$, so $a_{6}=3$.
Let b_{n} be the number of partitions of n in which every part is different, and none of them is divisible by 4 . By convention, $b_{0}=1$.

For example, for $n=6$, we get the partitions $\{(6),(5,1),(3,2,1)\}$, so $b_{6}=3$.
Use generating functions to show that $a_{n}=b_{n}$ for all n.
[Hint: The factorization $1+x^{k}+x^{2 k}+x^{3 k}=\left(1+x^{k}\right)\left(1+x^{2 k}\right)$ might be helpful.]

> (continued on next page)
(5) In class, we saw that the number of balanced strings of n pairs of parentheses is the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ using generating functions. Now you will derive this formula avoiding generating functions.

Consider the set of paths from $(0,0)$ to (n, n) using the steps $(1,0)$ and $(0,1)$. In HW4, $\# 6(\mathrm{~d})$ (in the context of Young diagrams inside of a rectangle), we saw that there are $\binom{2 n}{n}$ of them. To be precise, a path is an ordered sequence of vectors $\left(v_{1}, \ldots, v_{2 n}\right)$ where each v_{i} is either $(1,0)$ or $(0,1)$ and $v_{1}+\cdots+v_{2 n}=(n, n)$.

For example, for $n=2$, we draw below the two paths $((1,0),(0,1),(1,0),(0,1))$ and $((1,0),(0,1),(0,1),(1,0))$ by starting at $(0,0)$ and adding the vectors in order:

(The bottom left corner is $(0,0)$ and the top right corner is $(2,2)$.)
A path is good if it never goes strictly above the diagonal line $x=y$. In symbols, this means that the partial sums $v_{1}+\cdots+v_{i}$ always have the property that the first coordinate is greater than or equal to the second coordinate for any $1 \leq i \leq 2 n$. Any other path is bad.

For example, the path on the left in the example above is good while the path on the right is bad.
(a) Given a bad path $\left(v_{1}, \ldots, v_{2 n}\right)$, let r be the smallest index such that $v_{1}+\cdots+v_{r}$ is above the line $x=y$, i.e., the second coordinate is strictly bigger than the first coordinate. Create a new path $\left(w_{1}, \ldots, w_{2 n}\right)$ by

$$
w_{i}= \begin{cases}v_{i} & \text { if } 1 \leq i \leq r \\ (1,1)-v_{i} & \text { if } r+1 \leq i \leq 2 n\end{cases}
$$

In the example of a bad path above, $r=3$ and the new path w is $((1,0),(0,1),(0,1),(0,1))$.
[In words, w is the same path as v for the first r steps, but then we swap all of the remaining steps. Geometrically, we are reflecting the rest of the path across the line $y=x+1$.]
Show that $w_{1}+\cdots+w_{2 n}=(n-1, n+1)$.
(b) In (a) we defined a function from the set of bad paths to the set of paths from $(0,0)$ to $(n-1, n+1)$. Show that this function is a bijection. Conclude (using HW4, $\# 6(\mathrm{~d}))$ that the number of bad paths is $\binom{2 n}{n+1}$, and hence the number of good paths is $\frac{1}{n+1}\binom{2 n}{n}$.
(c) Find a bijection between the set of good paths from $(0,0)$ to (n, n) and the set of balanced strings of n pairs of parentheses. To prove correctness of your bijection, do not use the fact that the number of balanced strings is $\frac{1}{n+1}\binom{2 n}{n}$.
[Hint: Given a string S of n pairs of parentheses, define $L_{i}(S)$ to be the number of left parentheses that are in the first i symbols, and define $R_{i}(S)$ to be the number of right parentheses that are in the first i symbols (so $L_{i}(S)+R_{i}(S)=i$ and $\left.L_{2 n}(S)=R_{2 n}(S)=n\right)$. Prove that S is balanced if and only if $L_{i}(S) \geq R_{i}(S)$ for all $1 \leq i \leq 2 n$.]

