Math 475, Fall 2015
Homework 6
Due: Friday, Oct. 23
Notation: $[n]=\{1,2, \ldots, n\}$ and $e^{x}=\sum_{n \geq 0} \frac{x^{n}}{n!}$.
(1) Let n be a positive integer and let a_{n} be the number of different ways to pay n dollars using only $1,2,5,10,20$ dollar bills with the requirement that one cannot use more than five 20 dollar bills. Find a simple expression for the ordinary generating function

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n}
$$

(2) Let a, b be real numbers. Give a combinatorial proof of the identity

$$
e^{(a+b) x}=e^{a x} e^{b x}
$$

More specifically, show that both sides represent the same formal power series by showing that

$$
\sum_{n \geq 0} \frac{((a+b) x)^{n}}{n!}=\left(\sum_{n \geq 0} \frac{(a x)^{n}}{n!}\right)\left(\sum_{n \geq 0} \frac{(b x)^{n}}{n!}\right)
$$

(3) Let n be a positive integer. Given a group of n people, we want to divide them into nonempty committees and choose a chair and co-chair for each committee (they must be different people). Let h_{n} be the number of ways to do this and set $h_{0}=1$. Give a simple expression for the exponential generating function

$$
H(x)=\sum_{n \geq 0} \frac{h_{n}}{n!} x^{n}
$$

(4) Recall that a derangement of a set S is a bijection $f: S \rightarrow S$ such that $f(i) \neq i$ for $i \in S$. (We previously defined this for $S=[n]$ but there's essentially nothing new with this definition.) Let d_{n} be the number of derangements of $[n]$, and let

$$
D(x)=\sum_{n \geq 0} \frac{d_{n}}{n!} x^{n}
$$

(a) Without using the formula for d_{n} that we derived in class, show that

$$
D(x) e^{x}=\frac{1}{1-x} .
$$

[Hint: $\frac{1}{1-x}$ is the exponential generating function for the sequence $c_{n}=n$!, i.e., the number of permutations on $[n]$. Use the combinatorial interpretation for products of exponential generating functions.]
(b) Dividing both sides by e^{x} we get $D(x)=e^{-x} \frac{1}{1-x}$ (we know that $1 / e^{x}=e^{-x}$ because $e^{x} e^{-x}=e^{0 x}=1$ from Problem 2!). Use the product formula to recover the formula we derived in class:

$$
d_{n}=\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!} .
$$

(continued on next page)
(5) Let k be a positive integer. Let $a(k)_{n}$ be the number of ordered partitions of [n] into k blocks such that every block has at least 2 elements. Give a simple expression for the exponential generating function

$$
A_{k}(x)=\sum_{n \geq 0} \frac{a(k)_{n}}{n!} x^{n}
$$

[Hint: This is like our derivation of the exponential generating function for Stirling numbers. What happens for $k=1$? $k=2$?]

