Math 475, Fall 2015 Homework 7 Due: Friday, Oct. 30

- (1) Bóna 9.28: Let G be a simple graph and assume there is a walk from vertex A to vertex B. Prove that there is also a path from A to B. (Remember, a path is a walk that doesn't touch any vertex more than once.)
- (2) Let G be a graph without loops. Show that there is always a way to put a direction on each edge of G so that there are no directed cycles (having a directed cycle means that we can start at some vertex, follow some choice of edges going along the direction, and come back to the same vertex).
- (3) If G is a simple graph with n vertices, define its **degree sequence** to be the list of the degrees (d_1, \ldots, d_n) of its vertices in weakly increasing order (so $d_1 \leq d_2 \leq \cdots \leq d_n$).
 - (a) Prove that if G and H are isomorphic simple graphs, then their degree sequences are the same.
 - (b) Show that the converse need not be true by finding two simple graphs on 6 vertices with degree sequence (2, 2, 2, 2, 2, 2) which are not isomorphic to each other.
- (4) Bóna 9.34: Draw all isomorphism classes of simple graphs with 4 vertices. You may use the fact that there are 11: so just produce 11 graphs, but you should explain why your list doesn't have any repetitions.

[Hint: Organize them by number of edges; #3(a) might be helpful.]

- (5) Let n be a positive integer. Define a simple graph Q_n as follows:
 - The vertices are *n*-tuples (x_1, \ldots, x_n) with $x_i \in \{0, 1\}$ (so there are 2^n vertices).
 - There is an edge between (x_1, \ldots, x_n) and (y_1, \ldots, y_n) if the two *n*-tuples agree in exactly n-1 coordinates (i.e., there exists *i* such that $x_j = y_j$ if $j \neq i$ but $x_i \neq y_i$). So each vertex has degree *n*.

These are called hypercube graphs. Here are drawings of Q_2 and Q_3 :

- (a) Bóna 9.41: Prove that if $n \ge 2$, then Q_n has a Hamiltonian cycle.
- (b) Bóna 9.43 (variant): How many Hamiltonian cycles does Q₃ have that begin and end at (0,0,0)?
 [Hint: Show that if we pick any path e₁e₂e₃ of length 3 in Q₃ starting at (0,0,0), there is always a unique way to complete it to a Hamiltonian cycle. It might be

helpful to use automorphisms of Q_3 to reduce the number of cases considered. You may use, without proof, that if $\sigma: [3] \to [3]$ is a bijection, then the function

 $(x_1, x_2, x_3) \mapsto (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)})$ is an automorphism of Q_3 .]