Math 475, Fall 2015
Homework 7
Due: Friday, Oct. 30
(1) Bóna 9.28: Let G be a simple graph and assume there is a walk from vertex A to vertex B. Prove that there is also a path from A to B. (Remember, a path is a walk that doesn't touch any vertex more than once.)
(2) Let G be a graph without loops. Show that there is always a way to put a direction on each edge of G so that there are no directed cycles (having a directed cycle means that we can start at some vertex, follow some choice of edges going along the direction, and come back to the same vertex).
(3) If G is a simple graph with n vertices, define its degree sequence to be the list of the degrees $\left(d_{1}, \ldots, d_{n}\right)$ of its vertices in weakly increasing order (so $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$).
(a) Prove that if G and H are isomorphic simple graphs, then their degree sequences are the same.
(b) Show that the converse need not be true by finding two simple graphs on 6 vertices with degree sequence $(2,2,2,2,2,2)$ which are not isomorphic to each other.
(4) Bóna 9.34: Draw all isomorphism classes of simple graphs with 4 vertices. You may use the fact that there are 11: so just produce 11 graphs, but you should explain why your list doesn't have any repetitions.
[Hint: Organize them by number of edges; \#3(a) might be helpful.]
(5) Let n be a positive integer. Define a simple graph Q_{n} as follows:

- The vertices are n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in\{0,1\}$ (so there are 2^{n} vertices).
- There is an edge between $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ if the two n-tuples agree in exactly $n-1$ coordinates (i.e., there exists i such that $x_{j}=y_{j}$ if $j \neq i$ but $x_{i} \neq y_{i}$). So each vertex has degree n.
These are called hypercube graphs. Here are drawings of Q_{2} and Q_{3} :

(a) Bóna 9.41: Prove that if $n \geq 2$, then Q_{n} has a Hamiltonian cycle.
(b) Bóna 9.43 (variant): How many Hamiltonian cycles does Q_{3} have that begin and end at $(0,0,0)$?
[Hint: Show that if we pick any path $e_{1} e_{2} e_{3}$ of length 3 in Q_{3} starting at $(0,0,0)$, there is always a unique way to complete it to a Hamiltonian cycle. It might be helpful to use automorphisms of Q_{3} to reduce the number of cases considered.
You may use, without proof, that if $\sigma:[3] \rightarrow[3]$ is a bijection, then the function $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)$ is an automorphism of Q_{3}.]

