Recurrence relations
Math 475

Instructor: Steven Sam

Say we have a sequence of numbers ag, aq, as, ... that satisfies a recurrence relation of the
form
ay, = Cay_1+ Da,_o
whenever n > 2 (here C, D are some constants and D # 0). We want to find a closed formula
for a,,.
The characteristic polynomial of this recurrence relation is defined to be

t2 — Ct— D.
C++vC?2+4D

The roots of this polynomial are 5 . Call them « and . So we can factor the

characteristic polynomial as
(1) t? —Ct—D = (t—a)(t—p).

Comparing constant terms, we get aff = D, so a # 0 and S # 0 because we assumed that
D #0.

Here is the first statement:
Theorem 1. If a # 3, then there are constants ¢y and ¢y such that
a, = coa" + 16"
for all n.
To solve for the coefficients, plug in n =0 and n = 1 to get
ag = co+c1
a1 = acy + Beq.

Then you have to solve for cg,c; (ag,a; are part of the original sequence, so are given to
you).

Proof of Theorem 1. Define a generating function

A(z) = Z anx".
n=0
The recurrence relation says that we have a relation of the form
A(x) = CzA(x) + D2 A(x) + ag + (a1 — Cag)z.
We can rewrite this as
aop + (a1 — Cag)x
2 A(z) =
2) (z) 1 —Cz — Da?

We want to factor the denominator. To do this, plug in ¢ — 27! into (1) and multiply by
2
z“ to get

1—-Cz— Dx*=(1—azx)(1 - pz).
Now we can apply partial fraction decomposition to (2) to write
A (x) Co 1

:1—a:13+1—ﬂx
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for some constants ¢y, c;. But these terms are both geometric series, so we can further write
(o) o
A(z) = ¢ Z a"z" + Z pra”.
n=0 n=0
The coefficient of 2™ on the left side is a, and the coefficient of 2™ on the right side is
co™ 4+ ¢18™. So we have equality for all n. O
There is a loose end: what if a = 7
Theorem 2. If o = 3, then there are constants co and c; such that
an = cop” + cina”
for all n.
Again, to solve for cg, c1, just plug in n = 0,1 to get a system of equations:
ap = Co
a] = Ccpx + c1a.

Proof. We can start in the same way as in the previous proof. The only difference is that we
are trying to take the partial fraction decomposition of
agp + (a1 — Cag)x

(1 — ax)?

Az) =

This can still be done, but now it looks like

do . d
l—azr (1—oax)?

for some constants dy, d;. The first is a geometric series, and the second we’ve seen: remember
that 1/(1 —2)? = >, .o(n+1)z". So we get instead

A(x) = do Z a"z" +dy Z(n + 1)z
n=0

n=0
Comparing coefficients, we get
a, = dpa" + di(n+ 1)a"™ = (dy + dy)a™ + dyna”.
So ¢g = dy + dy and ¢; = d. O
Let’s finish with the example of the Fibonacci numbers f,,. These are defined by

fo=1

fi=1

o= foo1+ fa forn > 2
+5

So the characteristic polynomial is > — ¢ — 1. Its roots are . Set @ = (1++/5)/2 and

B =(1—-1+/5)/2. So we have
fn = COOén + Clﬁn



and we have to solve for ¢y and ¢;. Plug in n = 0,1 to get:

l=c+c
1 =coa+ c15.
So ¢g = 1 — ¢1; plug this into the second formula to get 1 = (1 — ¢;)a + ¢ 8. Rewrite this as
1 —a=ci(B — ). We can simplify this: 3 —a = —+v5and 1 —a = (1 —/5)/2. So
1-v5 145
Cl1 = — Co = 1-— C1 =

25

In conclusion:
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(The last step wasn’t necessary, we just did that to reduce the number of radical signs.)

What about higher degree recurrence relations like
a, = Cran_1 + Coap_o + -+ + Crly_s for n > k?

This can be solved in the same way: one has to first find the roots of the characteristic

polynomial t* — C1#*~1 — Cyt*=2 — ... — O}, and apply partial fraction decomposition. The
simplest case is when the roots aq, ..., ay are all distinct. In this case, we can say that there
exist constants ci, ..., c, such that

a, = o) + -+ oy

for all n. In order to solve for ¢y, ..., cg, we have to consider n = 0, ...,k — 1 separately to
get a system of k linear equations in k£ variables. When the roots appear with multiplicities,
we have to do something like we did in Theorem 2. For example, if £ = 5 and the roots are
a with multiplicity 3 and § with multiplicity 2 (and « # (), then we would have

an = 0" 4 cona™ + csn’a™ + 4" + exn S

This should look familiar to you if you've ever solved a linear homogeneous differential
equation with constant coefficients.

I'll leave it to you to formulate the general case, though we won’t be doing anything more
with it in this class.



