
Recurrence relations
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Instructor: Steven Sam

Say we have a sequence of numbers a0, a1, a2, . . . that satisfies a recurrence relation of the
form

an = Can−1 +Dan−2

whenever n ≥ 2 (here C,D are some constants and D 6= 0). We want to find a closed formula
for an.

The characteristic polynomial of this recurrence relation is defined to be

t2 − Ct−D.

The roots of this polynomial are
C ±

√
C2 + 4D

2
. Call them α and β. So we can factor the

characteristic polynomial as

t2 − Ct−D = (t− α)(t− β).(1)

Comparing constant terms, we get αβ = D, so α 6= 0 and β 6= 0 because we assumed that
D 6= 0.

Here is the first statement:

Theorem 1. If α 6= β, then there are constants c0 and c1 such that

an = c0α
n + c1β

n

for all n.

To solve for the coefficients, plug in n = 0 and n = 1 to get

a0 = c0 + c1

a1 = αc0 + βc1.

Then you have to solve for c0, c1 (a0, a1 are part of the original sequence, so are given to
you).

Proof of Theorem 1. Define a generating function

A(x) =
∞
∑

n=0

anx
n.

The recurrence relation says that we have a relation of the form

A(x) = CxA(x) +Dx2A(x) + a0 + (a1 − Ca0)x.

We can rewrite this as

A(x) =
a0 + (a1 − Ca0)x

1− Cx−Dx2
.(2)

We want to factor the denominator. To do this, plug in t 7→ x−1 into (1) and multiply by
x2 to get

1− Cx−Dx2 = (1− αx)(1− βx).

Now we can apply partial fraction decomposition to (2) to write

A(x) =
c0

1− αx
+

c1
1− βx

1
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for some constants c0, c1. But these terms are both geometric series, so we can further write

A(x) = c0

∞
∑

n=0

αnxn + c1

∞
∑

n=0

βnxn.

The coefficient of xn on the left side is an and the coefficient of xn on the right side is
c0α

n + c1β
n. So we have equality for all n. �

There is a loose end: what if α = β?

Theorem 2. If α = β, then there are constants c0 and c1 such that

an = c0α
n + c1nα

n

for all n.

Again, to solve for c0, c1, just plug in n = 0, 1 to get a system of equations:

a0 = c0

a1 = c0α + c1α.

Proof. We can start in the same way as in the previous proof. The only difference is that we
are trying to take the partial fraction decomposition of

A(x) =
a0 + (a1 − Ca0)x

(1− αx)2
.

This can still be done, but now it looks like

d0
1− αx

+
d1

(1− αx)2

for some constants d0, d1. The first is a geometric series, and the second we’ve seen: remember
that 1/(1− x)2 =

∑

n≥0
(n+ 1)xn. So we get instead

A(x) = d0

∞
∑

n=0

αnxn + d1
∑

n=0

(n+ 1)αnxn.

Comparing coefficients, we get

an = d0α
n + d1(n+ 1)αn = (d0 + d1)α

n + d1nα
n.

So c0 = d0 + d1 and c1 = d1. �

Let’s finish with the example of the Fibonacci numbers fn. These are defined by

f0 = 1

f1 = 1

fn = fn−1 + fn−2 for n ≥ 2

So the characteristic polynomial is t2 − t− 1. Its roots are
1±

√
5

2
. Set α = (1+

√
5)/2 and

β = (1−
√
5)/2. So we have

fn = c0α
n + c1β

n
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and we have to solve for c0 and c1. Plug in n = 0, 1 to get:

1 = c0 + c1

1 = c0α + c1β.

So c0 = 1− c1; plug this into the second formula to get 1 = (1− c1)α+ c1β. Rewrite this as
1− α = c1(β − α). We can simplify this: β − α = −

√
5 and 1− α = (1−

√
5)/2. So

c1 = −1−
√
5

2
√
5

, c0 = 1− c1 =
1 +

√
5

2
√
5

.

In conclusion:

fn =
1 +

√
5

2
√
5

(

1 +
√
5

2

)n

− 1−
√
5

2
√
5

(

1−
√
5

2

)n

=
1√
5

(

1 +
√
5

2

)n+1

− 1√
5

(

1−
√
5

2

)n+1

.

(The last step wasn’t necessary, we just did that to reduce the number of radical signs.)

What about higher degree recurrence relations like

an = C1an−1 + C2an−2 + · · ·+ Ckan−k for n ≥ k?

This can be solved in the same way: one has to first find the roots of the characteristic
polynomial tk − C1t

k−1 − C2t
k−2 − · · · − Ck and apply partial fraction decomposition. The

simplest case is when the roots α1, . . . , αk are all distinct. In this case, we can say that there
exist constants c1, . . . , ck such that

an = c1α
n

1 + · · ·+ ckα
n

k

for all n. In order to solve for c1, . . . , ck, we have to consider n = 0, . . . , k − 1 separately to
get a system of k linear equations in k variables. When the roots appear with multiplicities,
we have to do something like we did in Theorem 2. For example, if k = 5 and the roots are
α with multiplicity 3 and β with multiplicity 2 (and α 6= β), then we would have

an = c1α
n + c2nα

n + c3n
2αn + c4β

n + c5nβ
n.

This should look familiar to you if you’ve ever solved a linear homogeneous differential
equation with constant coefficients.

I’ll leave it to you to formulate the general case, though we won’t be doing anything more
with it in this class.


