Recurrence relations
Math 475
Instructor: Steven Sam
Say we have a sequence of numbers $a_{0}, a_{1}, a_{2}, \ldots$ that satisfies a recurrence relation of the form

$$
a_{n}=C a_{n-1}+D a_{n-2}
$$

whenever $n \geq 2$ (here C, D are some constants and $D \neq 0$). We want to find a closed formula for a_{n}.

The characteristic polynomial of this recurrence relation is defined to be

$$
t^{2}-C t-D
$$

The roots of this polynomial are $\frac{C \pm \sqrt{C^{2}+4 D}}{2}$. Call them α and β. So we can factor the characteristic polynomial as

$$
\begin{equation*}
t^{2}-C t-D=(t-\alpha)(t-\beta) \tag{1}
\end{equation*}
$$

Comparing constant terms, we get $\alpha \beta=D$, so $\alpha \neq 0$ and $\beta \neq 0$ because we assumed that $D \neq 0$.

Here is the first statement:
Theorem 1. If $\alpha \neq \beta$, then there are constants c_{0} and c_{1} such that

$$
a_{n}=c_{0} \alpha^{n}+c_{1} \beta^{n}
$$

for all n.
To solve for the coefficients, plug in $n=0$ and $n=1$ to get

$$
\begin{aligned}
& a_{0}=c_{0}+c_{1} \\
& a_{1}=\alpha c_{0}+\beta c_{1} .
\end{aligned}
$$

Then you have to solve for $c_{0}, c_{1}\left(a_{0}, a_{1}\right.$ are part of the original sequence, so are given to you).
Proof of Theorem 1. Define a generating function

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

The recurrence relation says that we have a relation of the form

$$
A(x)=C x A(x)+D x^{2} A(x)+a_{0}+\left(a_{1}-C a_{0}\right) x
$$

We can rewrite this as

$$
\begin{equation*}
A(x)=\frac{a_{0}+\left(a_{1}-C a_{0}\right) x}{1-C x-D x^{2}} \tag{2}
\end{equation*}
$$

We want to factor the denominator. To do this, plug in $t \mapsto x^{-1}$ into (1) and multiply by x^{2} to get

$$
1-C x-D x^{2}=(1-\alpha x)(1-\beta x)
$$

Now we can apply partial fraction decomposition to (2) to write

$$
A(x)=\frac{c_{0}}{1-\alpha x}+\frac{c_{1}}{1-\beta x}
$$

for some constants c_{0}, c_{1}. But these terms are both geometric series, so we can further write

$$
A(x)=c_{0} \sum_{n=0}^{\infty} \alpha^{n} x^{n}+c_{1} \sum_{n=0}^{\infty} \beta^{n} x^{n}
$$

The coefficient of x^{n} on the left side is a_{n} and the coefficient of x^{n} on the right side is $c_{0} \alpha^{n}+c_{1} \beta^{n}$. So we have equality for all n.

There is a loose end: what if $\alpha=\beta$?
Theorem 2. If $\alpha=\beta$, then there are constants c_{0} and c_{1} such that

$$
a_{n}=c_{0} \alpha^{n}+c_{1} n \alpha^{n}
$$

for all n.
Again, to solve for c_{0}, c_{1}, just plug in $n=0,1$ to get a system of equations:

$$
\begin{aligned}
a_{0} & =c_{0} \\
a_{1} & =c_{0} \alpha+c_{1} \alpha .
\end{aligned}
$$

Proof. We can start in the same way as in the previous proof. The only difference is that we are trying to take the partial fraction decomposition of

$$
A(x)=\frac{a_{0}+\left(a_{1}-C a_{0}\right) x}{(1-\alpha x)^{2}}
$$

This can still be done, but now it looks like

$$
\frac{d_{0}}{1-\alpha x}+\frac{d_{1}}{(1-\alpha x)^{2}}
$$

for some constants d_{0}, d_{1}. The first is a geometric series, and the second we've seen: remember that $1 /(1-x)^{2}=\sum_{n \geq 0}(n+1) x^{n}$. So we get instead

$$
A(x)=d_{0} \sum_{n=0}^{\infty} \alpha^{n} x^{n}+d_{1} \sum_{n=0}(n+1) \alpha^{n} x^{n} .
$$

Comparing coefficients, we get

$$
a_{n}=d_{0} \alpha^{n}+d_{1}(n+1) \alpha^{n}=\left(d_{0}+d_{1}\right) \alpha^{n}+d_{1} n \alpha^{n} .
$$

So $c_{0}=d_{0}+d_{1}$ and $c_{1}=d_{1}$.
Let's finish with the example of the Fibonacci numbers f_{n}. These are defined by

$$
\begin{aligned}
& f_{0}=1 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \quad \text { for } n \geq 2
\end{aligned}
$$

So the characteristic polynomial is $t^{2}-t-1$. Its roots are $\frac{1 \pm \sqrt{5}}{2}$. Set $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$. So we have

$$
f_{n}=c_{0} \alpha^{n}+c_{1} \beta^{n}
$$

and we have to solve for c_{0} and c_{1}. Plug in $n=0,1$ to get:

$$
\begin{aligned}
& 1=c_{0}+c_{1} \\
& 1=c_{0} \alpha+c_{1} \beta .
\end{aligned}
$$

So $c_{0}=1-c_{1}$; plug this into the second formula to get $1=\left(1-c_{1}\right) \alpha+c_{1} \beta$. Rewrite this as $1-\alpha=c_{1}(\beta-\alpha)$. We can simplify this: $\beta-\alpha=-\sqrt{5}$ and $1-\alpha=(1-\sqrt{5}) / 2$. So

$$
c_{1}=-\frac{1-\sqrt{5}}{2 \sqrt{5}}, \quad c_{0}=1-c_{1}=\frac{1+\sqrt{5}}{2 \sqrt{5}} .
$$

In conclusion:

$$
\begin{aligned}
f_{n} & =\frac{1+\sqrt{5}}{2 \sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1-\sqrt{5}}{2 \sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& =\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}
\end{aligned}
$$

(The last step wasn't necessary, we just did that to reduce the number of radical signs.)
What about higher degree recurrence relations like

$$
a_{n}=C_{1} a_{n-1}+C_{2} a_{n-2}+\cdots+C_{k} a_{n-k} \quad \text { for } n \geq k ?
$$

This can be solved in the same way: one has to first find the roots of the characteristic polynomial $t^{k}-C_{1} t^{k-1}-C_{2} t^{k-2}-\cdots-C_{k}$ and apply partial fraction decomposition. The simplest case is when the roots $\alpha_{1}, \ldots, \alpha_{k}$ are all distinct. In this case, we can say that there exist constants c_{1}, \ldots, c_{k} such that

$$
a_{n}=c_{1} \alpha_{1}^{n}+\cdots+c_{k} \alpha_{k}^{n}
$$

for all n. In order to solve for c_{1}, \ldots, c_{k}, we have to consider $n=0, \ldots, k-1$ separately to get a system of k linear equations in k variables. When the roots appear with multiplicities, we have to do something like we did in Theorem 2. For example, if $k=5$ and the roots are α with multiplicity 3 and β with multiplicity 2 (and $\alpha \neq \beta$), then we would have

$$
a_{n}=c_{1} \alpha^{n}+c_{2} n \alpha^{n}+c_{3} n^{2} \alpha^{n}+c_{4} \beta^{n}+c_{5} n \beta^{n} .
$$

This should look familiar to you if you've ever solved a linear homogeneous differential equation with constant coefficients.

I'll leave it to you to formulate the general case, though we won't be doing anything more with it in this class.

