Math 154, Winter 2019 Homework 2 Due: Tuesday, Jan. 22 by noon in basement of AP&M

- (1) How many ways are there to list the letters of the word LAJOLLA?
- (2) How many integers are there between 1000 and 9999 in which all digits are different?
- (3) How many ways are there to pick 5 days in February (assume it's not a leap year) such that at most one Sunday is picked?
- (4) (a) We want to select three subsets A, B, and C of [n] so that $A \subseteq C$ and $B \subseteq C$. How many ways can this be done?
 - (b) We want to select three subsets A, B, and C of [n] so that $A \subseteq C$, $B \subseteq C$, and $A \cap B \neq \emptyset$. How many ways can this be done?
- (5) A "forward path" in the plane is a sequence of steps of the form (1,0) and (0,1).
 - (a) How many forward paths are there from (0, 0) to (a, b) where a, b are non-negative integers?
 - (b) How many forward paths are there from (a, b) to (c, d) where $c \ge a \ge 0$ and $d \ge b \ge 0$ are integers?
 - (c) Generalize this definition to d dimensions by only allowing steps which increase one of the coordinates by 1 (so (1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1)). How many forward paths are there from (0, 0, ..., 0) to $(a_1, a_2, ..., a_d)$ where $a_1, ..., a_d$ are non-negative integers?
- (6) Let n and k be positive integers. Show that the number of ordered collections (X_1, \ldots, X_k) , where each X_i is a subset of [n], and $X_1 \cap X_2 \cap \cdots \cap X_k = \emptyset$ (i.e., there is no element which is in all of the X_i) is $(2^k 1)^n$.

For example, when k = 2 and n = 2, here are the 9 ordered collections:

(\emptyset, \emptyset)	$(\emptyset, \{1\})$	$(\emptyset, \{2\})$
$(\emptyset, \{1, 2\})$	$(\{1\}, \emptyset)$	$(\{2\}, \emptyset)$
$(\{1,2\},\emptyset)$	$(\{1\},\{2\})$	$(\{2\},\{1\}).$