Math 154, Winter 2019
Homework 3
Due: Monday, January 28 by 5PM in basement of AP\&M
(1) Consider the equation

$$
x_{1}+\cdots+x_{6}=32
$$

For each of the following conditions, how many solutions are there? (Each part is an independent problem, don't combine the conditions.) Explain your answer in each case.
(a) The x_{i} are non-negative even integers.
(b) The x_{i} are non-negative odd integers.
(c) The x_{i} are positive integers.
(d) The x_{i} are non-negative integers and $x_{6} \leq 2$.
(2) How many positive integers ≤ 42000 are not divisible by any of $2,3,7$?
(3) How many ways are there to list the letters of the word MATHEMATICS so that no two consecutive letters are the same?
(4) Let r, m, n be positive integers. Prove that

$$
\sum_{i=0}^{r}\binom{m}{i}\binom{n}{r-i}=\binom{m+n}{r}
$$

(5) Let $n \geq 2$ be an integer.
(a) Prove that

$$
\sum_{i=0}^{n} i\binom{n}{i}(-1)^{i-1}=0
$$

(b) Deduce from (a) that

$$
\sum_{\substack{0 \leq i \leq n \\ i \text { odd }}} i\binom{n}{i}=\sum_{\substack{0 \leq i \leq n \\ i \text { even }}} i\binom{n}{i}
$$

and compute the common value.

