Math 154, Winter 2019 Homework 4 Due: Monday, February 11 by 5PM in basement of AP&M

- (1) If G is a simple graph with n vertices, define its degree sequence to be the list of the degrees (d₁,..., d_n) of its vertices in weakly increasing order (so d₁ ≤ d₂ ≤ ··· ≤ d_n).
 (a) Prove that (d + d + + d)/2 is the number of addres of C
 - (a) Prove that $(d_1 + d_2 + \cdots + d_n)/2$ is the number of edges of G.
 - (b) Prove that if G and H are isomorphic simple graphs, then their degree sequences are the same.
 - (c) Show that the converse need not be true by finding two simple graphs on 6 vertices with degree sequence (2, 2, 2, 2, 2, 2) which are not isomorphic to each other.
- (2) Draw all isomorphism classes of simple graphs with 4 vertices. You may use the fact that there are 11: so just produce 11 graphs, but you should explain why your list doesn't have any repetitions.
- (3) Let n be a positive integer. Define a simple graph Q_n as follows:
 - The vertices are *n*-tuples (x_1, \ldots, x_n) with $x_i \in \{0, 1\}$.
 - There is an edge between (x_1, \ldots, x_n) and (y_1, \ldots, y_n) if they agree in exactly n-1 coordinates (i.e., there exists *i* such that $x_j = y_j$ if $j \neq i$ but $x_i \neq y_i$). Here are drawings of Q_2 and Q_3 :

- (a) Prove that Q_n is connected.
- (b) How many vertices does Q_n have? How many edges?
- (c) For what values of n does Q_n have a closed Eulerian trail?
- (d) Prove that if $n \ge 2$, then Q_n has a Hamiltonian cycle.
- (e) Let σ be a permutation of [n]. Show that the function $(x_1, \ldots, x_n) \mapsto (x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ is an automorphism of Q_n . Give an example (for all n) of another automorphism of Q_n which is not of this form.
- (4) Let G be a graph and assume there is a walk from vertex A to vertex B. Prove that there is also a path from A to B. (Remember, a path is a walk that doesn't touch any vertex more than once.)

Hints:

- 2: Organize them by number of edges; #1(b) might be helpful
- 4: Among all walks from A to B, consider one whose length is as small as possible.