Math 154, Winter 2019
Homework 4
Due: Monday, February 11 by 5PM in basement of AP\&M
(1) If G is a simple graph with n vertices, define its degree sequence to be the list of the degrees $\left(d_{1}, \ldots, d_{n}\right)$ of its vertices in weakly increasing order (so $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$).
(a) Prove that $\left(d_{1}+d_{2}+\cdots+d_{n}\right) / 2$ is the number of edges of G.
(b) Prove that if G and H are isomorphic simple graphs, then their degree sequences are the same.
(c) Show that the converse need not be true by finding two simple graphs on 6 vertices with degree sequence $(2,2,2,2,2,2)$ which are not isomorphic to each other.
(2) Draw all isomorphism classes of simple graphs with 4 vertices. You may use the fact that there are 11: so just produce 11 graphs, but you should explain why your list doesn't have any repetitions.
(3) Let n be a positive integer. Define a simple graph Q_{n} as follows:

- The vertices are n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in\{0,1\}$.
- There is an edge between $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ if they agree in exactly $n-1$ coordinates (i.e., there exists i such that $x_{j}=y_{j}$ if $j \neq i$ but $x_{i} \neq y_{i}$). Here are drawings of Q_{2} and Q_{3} :

(a) Prove that Q_{n} is connected.
(b) How many vertices does Q_{n} have? How many edges?
(c) For what values of n does Q_{n} have a closed Eulerian trail?
(d) Prove that if $n \geq 2$, then Q_{n} has a Hamiltonian cycle.
(e) Let σ be a permutation of $[n]$. Show that the function $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ is an automorphism of Q_{n}. Give an example (for all n) of another automorphism of Q_{n} which is not of this form.
(4) Let G be a graph and assume there is a walk from vertex A to vertex B. Prove that there is also a path from A to B. (Remember, a path is a walk that doesn't touch any vertex more than once.)

Hints:

2: Organize them by number of edges; $\# 1(\mathrm{~b})$ might be helpful
4: Among all walks from A to B, consider one whose length is as small as possible.

