Math 154, Winter 2019
Homework 5
Due: Tuesday, Feb. 19 by noon in basement of AP\&M
(1) How many spanning trees does the following graph have?

(2) Up to isomorphism, there are 6 different trees with 6 vertices. Draw all of them. Justify why they aren't isomorphic to each other (try to find a unique property that each one has that the others don't).
(3) Let G be a graph and x, y be two vertices which have at least 2 different paths between them. Prove that G has a cycle (this is a step in a proof from class, so you're asked to fill in the missing detail).
(4) Let G be a graph and let A_{G} be its adjacency matrix.
(a) Show that the number of closed walks of length k in G is $\operatorname{trace}\left(A_{G}^{k}\right)$. (Recall that the trace of a square matrix is the sum of its diagonal entries.)
(b) Use (a) to give a formula for the number of closed walks of length k in the triangle:

(5) Let G be a graph without loops. Define a cycle-free orientation of G to be an assignment of directions on each edge of G so that it has no directed cycles. For example, here is a cycle-free orientation of the triangle:

Let $\Omega(G)$ be the number of cycle-free orientations of G. For the triangle, we have $\Omega(G)=6$ (there are $2^{3}=8$ orientations total and 2 of them are directed cycles). If G has no edges, then we make the convention that $\Omega(G)=1$.
(a) Let H be a graph without loops, and let H^{\prime} be the simple version of $H: H^{\prime}$ has the same vertices of H, but if there is at least one edge between two vertices x and y in H, we replace all of them with a single edge in H^{\prime}. Show that

$$
\Omega(H)=\Omega\left(H^{\prime}\right) .
$$

(b) Suppose G is simple. If e is an edge of G, show that

$$
\Omega(G)=\Omega(G \backslash e)+\Omega(G / e)
$$

Hints
4b: The trace of a square matrix is the sum of its eigenvalues (with multiplicity)
5b: Given a cycle-free orientation of $G \backslash e$, potentially one of three cases occurs: (1) either way of directing e creates a directed cycle for $G,(2)$ exactly one way of directing e is a cycle-free orientation of G, or (3) both ways of directing e is a cycle-free orientation of G.

Show that (1) never happens, in case (2) the cycle-free orientation of G has a directed cycle when we contract e, and in case (3), if we contract e, either of the 2 cycle-free orientations of G become a cycle-free orientation for G / e (in fact, the same one).

