
Notes for Math 154
Steven V Sam

Contents

1. Induction 2
1.1. Weak induction 2
1.2. Strong induction 3
2. Elementary counting problems 4
2.1. Bijections 4
2.2. Sum and product principle 4
2.3. Permutations and combinations 4
2.4. Words 6
2.5. Choice problems 7
3. Binomial theorem and generalizations 8
3.1. Binomial theorem 8
3.2. Multinomial theorem 10
4. Inclusion-exclusion 10
5. Graph theory, introduction 13
5.1. Eulerian trails 14
5.2. Directed graphs 15
5.3. Hamiltonian cycles 16
5.4. Graph isomorphisms 17
6. Trees 18
6.1. Definition and basic properties 18
6.2. Adjacency matrix 20
6.3. Deletion-contraction 21
6.4. Matrix-tree theorem 22
6.5. Minimum-weight spanning trees 27
7. Coloring and matching 28
7.1. Colorings and chromatic polynomials 28
7.2. Bipartite graphs 32
7.3. Matchings 33
7.4. Stable matchings 35
8. Planarity 36
8.1. Definitions 36
8.2. Some equations and inequalities 37
8.3. Obstructions to planarity 38
8.4. Chromatic numbers of planar graphs 39
9. Ramsey theory 40
9.1. Pigeon-hole principle 40
9.2. Ramsey’s theorem for graphs 42
9.3. Lower bounds on Ramsey numbers 46

1

2

1. Induction

Induction is a proof technique that I expect that you’ve seen and grown familiar with in
a course on introduction to proofs. We will review it here and discuss some different ways
to use it.

1.1. Weak induction. Induction is used when we have a sequence of statements P (0), P (1), P (2), . . .
labeled by non-negative integers that we’d like to prove. For example, P (n) could be the
statement:

∑n
i=0 i = n(n + 1)/2. In order to prove that all of the statements P (n) are true

using induction, we need to do 2 things:

• Prove that P (0) is true.
• Assuming that P (n) is true, use it to prove that P (n+ 1) is true.

Let’s see how that works for our example:

• P (0) is the statement
∑0

i=0 i = 0 · 1/2. Both sides are 0, so the equality is valid.
• Now we assume that P (n) is true, i.e., that

∑n
i=0 i = n(n + 1)/2. Now we want to

prove that
∑n+1

i=0 i = (n+1)(n+2)/2. Add n+1 to both sides of the original identity.

Then the left side becomes
∑n+1

i=0 and the right side becomes n(n + 1)/2 + n + 1 =
(n+ 1)(n/2 + 1) = (n+ 1)(n+ 2)/2, so the new identity we want is valid.

Since we’ve completed the two required steps, we have proven that the summation identity
holds for all n.

Remark 1.1. We have labeled the statements starting from 0, but sometimes it’s more
natural to start counting from 1 instead, or even some larger integer. The same reasoning
as above will apply for these variations. The first step “Prove that P (0) is true” is then
replaced by “Prove that P (1) is true” or wherever the start of your indexing occurs. �

Theorem 1.2. There are 2n subsets of a set of size n.

For example, if S = {1, ?, U}, then there are 23 = 8 subsets, and we can list them:
∅, {1}, {?}, {U}, {1, ?}, {1, U}, {U, ?}, {1, ?, U}.

Proof. Let P (n) be the statement that any set of size n has exactly 2n subsets.
We check P (0) directly: if S has 0 elements, then S = ∅, and the only subset is S itself,

which is consistent with 20 = 1.
Now we assume P (n) holds and use it to show that P (n+ 1) is also true. Let S be a set

of size n + 1. Pick an element x ∈ S and let S ′ be the subset of S consisting all elements
that are not equal to x, i.e., S ′ = S \ {x}. Then S ′ has size n, so by induction the number
of subsets of S ′ is 2n. Now, every subset of S either contains x or it does not. Those which
do not contain x can be thought of as subsets of S ′, so there are 2n of them. To count those
that do contain x, we can take any subset of S ′ and add x to it. This accounts for all of them
exactly once, so there are also 2n subsets that contain x. All together we have 2n+2n = 2n+1

subsets of S, so P (n+ 1) holds. �

Continuing with our example, if x = 1, then the subsets not containing x are ∅, {?}, {U}, {?, U},
while those that do contain x are {1}, {1, ?}, {1, U}, {1, ?, U}. There are 22 = 4 of each kind.

A natural followup is to determine how many subsets have a given size. In our previous
example, there is 1 subset of size 0, 3 of size 1, 3 of size 2, and 1 of size 3. We’ll discuss this
problem in the next section.

Some more to think about:

3

• Show that
∑n

i=0 i
2 = n(n+ 1)(2n+ 1)/6 for all n ≥ 0.

• Show that
∑n

i=0 2i = 2n+1 − 1 for all n ≥ 0.
• Show that 4n < 2n whenever n ≥ 5.

What happens with
∑n

i=0 i
3 or

∑n
i=0 i

4, or...? In the first two cases, we got polynomials
in n on the right side. You’ll show on homework that this always happens.

1.2. Strong induction. The version of induction we just described is sometimes called
“weak induction”. Here’s a variant sometimes called “strong induction”. We have the same
setup: we want to prove that a sequence of statements P (0), P (1), P (2), . . . are true. Then
strong induction works by completing the following 2 steps:

• Prove that P (0) is true.
• Assuming that P (0), P (1), . . . , P (n) are all true, use them to prove that P (n+ 1) is

true.

You should convince yourself that this isn’t really anything logically distinct from weak
induction. However, it can sometimes be convenient to use this variation.

Example 1.3. We know that every polynomial in x is a linear combination of 1, x, x2, x3,
We use strong induction to prove the statement that every polynomial is a linear combination
is a linear combination of 1, (x− 1), (x− 1)2, (x− 1)3,

Let P (n) be the statement that every polynomial of degree n is a linear combination of
powers of x− 1.

Then P (0) is true: the only polynomials of degree 0 are constants, and we can write
c = c · 1.

Now assume that P (0), P (1), . . . , P (n) are all true. We will use them to show that P (n+1)
is true. Let f(x) be an arbitrary polynomial of degree n+ 1. Let α be its leading term and
define g(x) = f(x)− α · (x− 1)n+1. Then g(x) is a polynomial of degree ≤ n since we have
cancelled off the xn+1 terms. So by strong induction, g(x) is a linear combination of powers
of x− 1. If we add α · (x− 1)n+1 to this linear combination, we see that f(x) is also a linear
combination of powers of x − 1. Since our argument applies to any polynomial of degree
n+ 1, we have proved P (n+ 1) is true. �

Some examples to think about:

• There’s nothing particular about powers of x or powers of x − 1. For example, we
can take powers of any linear polynomial ax+ b with a 6= 0. Adapt the argument to
work for this generalization.
• Every positive integer can be written in the form 2nm where n ≥ 0 and m is an odd

integer.
• Every integer n ≥ 2 can be written as a product of prime numbers.
• Define a function f on the natural numbers by f(0) = 1, f(1) = 2, and f(n + 1) =
f(n− 1) + 2f(n) for all n ≥ 1. Show that f(n) ≤ 3n for all n ≥ 0.
• A chocolate bar is made up of unit squares in an n ×m rectangular grid. You can

break up the bar into 2 pieces by breaking on either a horizontal or vertical line.
Show that you need to make nm− 1 breaks to completely separate the bar into 1× 1
squares (if you have 2 pieces already, stacking them and breaking them counts as 2
breaks).

4

2. Elementary counting problems

2.1. Bijections. Given two functions f : X → Y and g : Y → X, we say that they are
inverses if f ◦ g is the identity function on Y , i.e., f(g(y)) = y for all y ∈ Y , and if g ◦ f is
the identity function on X, i.e., g(f(x)) = x for all x ∈ X. In that case, the functions f and
g are called bijections.

The following is a very important principle in counting arguments:

Proposition 2.1. If there exists a bijection between X and Y , then |X| = |Y |.

We can think of a bijection f between X and Y as a way of matching the elements of X
with the elements of Y . In particular, x ∈ X gets matched with y = f(x) ∈ Y . Note that
if x′ ∈ X was also matched with y, i.e., f(x′) = f(x), then the existence of the inverse g
shows us that g(f(x′)) = g(f(x)), or more simply x = x′. In other words, f is forced to be
one-to-one (or injective). On the other hand, every element is matched with something,
i.e., every y ∈ Y is of the form f(x) for some x because we can take x = g(y). In other
words, f is forced to be onto (or surjective).

Remark 2.2. Bijections tell us that two sets have the same size without having to know
how many elements are actually in the set.

Here’s a small example: imagine there is a theatre filled with hundreds of people and
hundreds of seats. If we wanted to know if there are the same number of people as seats, we
could count both. However, it would probably be much easier to just have each person take
a seat and see if there are any empty or any standing people. �

We’ll see some other examples later on.

2.2. Sum and product principle. Given two sets X and Y without any overlap, we have
|X ∪ Y | = |X| + |Y |. We’ll just take this for granted, though you can call it the sum
principle if you’d like a name for it.

The set of pairs of elements (x, y) where x ∈ X and y ∈ Y is the Cartesian product X×Y .
The related product principle says that |X × Y | = |X| · |Y |. Again, we will take this for
granted and not usually refer to it by name.

2.3. Permutations and combinations. Given a set S of objects, a permutation of S is
a way to put all of the elements of S in order. More formally, if |S| = n, then a permutation
is a bijection f : S → [n].

Example 2.3. There are 6 permutations of {1, 2, 3} which we list:

123, 132, 213, 231, 312, 321. �

To count permutations in general, we define the factorial as follows: 0! = 1 and if n is a
positive integer, then n! = n · (n− 1)!. Here are the first few values:

0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720.

In the previous example, we had 6 permutations of 3 elements, and 6 = 3!. This holds more
generally:

Theorem 2.4. If S has n elements and n > 0, then there are n! different permutations of
S.

5

Proof. We do this by induction on n. Let P (n) be the statement that a set of size n has
exactly n! elements. The statement P (1) follows from the definition: there is exactly 1 way
to order a single element, and 1! = 1. Now assume for our induction hypothesis that P (n)
has been proven. Let S be a set of size n + 1. To order the elements, we can first pick any
element to be first, and then we have to order the remaining n elements. There are n + 1
different elements that can be first, and for each such choice, there are n! ways to order the
remaining elements by our induction hypothesis. So all together, we have (n+1)·n! = (n+1)!
different ways to order all of them, which proves P (n+ 1). �

We can use factorials to answer related questions. For example, suppose that some of the
objects in our set can’t be distinguished from one another, so that some of the orderings end
up being the same.

Example 2.5. (1) Suppose we are given 2 red flowers and 1 yellow flower. Aside from
their color, the flowers look identical. We want to count how many ways we can
display them in a single row. There are 3 objects total, so we might say there are
3! = 6 such ways. But consider what the 6 different ways look like:

RRY, RRY, RY R, RY R, Y RR, Y RR.

Since the two red flowers look identical, we don’t actually care which one comes first.
So there are really only 3 different ways to do this – the answer 3! has included each
different way twice, but we only wanted to count them a single time.

(2) Consider a larger problem: 10 red flowers and 5 yellow flowers. There are too many
to list, so we consider a different approach. As above, if we naively count, then we
would get 15! permutations of the flowers. But note that for any given arrangement,
the 10 red flowers can be reordered in any way to get an identical arrangement, and
same with the yellow flowers. So in the list of 15! permutations, each arrangement
is being counted 10! · 5! times. The number of distinct arrangements is then 15!

10!5!
.

(3) The same reasoning allows us to generalize. If we have r red flowers and y yellow

flowers, then the number of different ways to arrange them is (r+y)!
r!y!

.

(4) How about more than 2 colors of flowers? If we threw in b blue flowers, then again

the same reasoning gives us (r+y+b)!
r!y!b!

different arrangements. �

Now we state a general formula, which again can be derived by the same reasoning as in
(2) above. Suppose we are given n objects, which have one of k different types (for example,
our objects could be flowers and the types are colors). Also, objects of the same type are
considered identical. For convenience, we will label the “types” with numbers 1, 2, . . . , k and
let ai be the number of objects of type i (so a1 + a2 + · · ·+ ak = n).

Theorem 2.6. The number of ways to arrange the n objects in the above situation is

n!

a1!a2! · · · ak!
.

As an exercise, you should adapt the reasoning in (2) to give a proof of this theorem.
The quantity above will be used a lot, so we give it a symbol, called the multinomial

coefficient: (
n

a1, a2, . . . , ak

)
:=

n!

a1!a2! · · · ak!
.

6

In the case when k = 2 (a very important case), it is called the binomial coefficient. Note
that in this case, a2 = n− a1, so for shorthand, one often just writes

(
n
a1

)
instead of

(
n

a1,a2

)
.

For similar reasons,
(
n
a2

)
is also used as a shorthand.

2.4. Words. A word is a finite ordered sequence whose entries are drawn from some set
A (which we call the alphabet). The length of the word is the number of entries it has.
Entries may repeat, there is no restriction on that. Also, the empty sequence ∅ is considered
a word of length 0.

Example 2.7. Say our alphabet is A = {a, b}. The words of length ≤ 2 are:

∅, a, b, aa, ab, ba, bb. �

Theorem 2.8. If |A| = n, then the number of words in A of length k is nk.

Proof. A sequence of length k with entries in A is an element in the product set Ak =
A× A× · · · × A and |Ak| = |A|k.

Alternatively, we can think of this as follows. To specify a word, we pick each of its entries,
but these can be done independently of the other choices. So for each of the k positions,
we are choosing one of n different possibilities, which leads us to n · n · · ·n = nk different
choices for words. �

For a positive integer n, let [n] denote the set {1, . . . , n}.

Example 2.9. We use words to show that the number of subsets of [n] is 2n (we’ve already
seen this result, so now we’re using a different proof method).

Given a subset S ⊆ [n], we define a word wS of length n in the alphabet {0, 1} as follows.
If i ∈ S, then the ith entry of wS is 1, and otherwise the entry is 0. This defines a function

f : {subsets of [n]} → {words of length n on {0, 1}}.

We can also define an inverse function: given such a word w, we send it to the subset of
positions where there is a 1 in w. We omit the check that these two functions are inverse to
one another. So f is a bijection, and the previous result tells us that there are 2n words of
length n on {0, 1}. �

Example 2.10. How many pairs of subsets S, T ⊆ [n] satisfy S ⊆ T? We can also encode
this problem as a problem about words. Let A be the alphabet of size 3 whose elements are:
“in S”, “in T but not S” and “not in T”. Then each pair S ⊆ T gives a word of length n in
A: the ith entry of the word is the element which describes the position of i. So there are
3n such pairs. �

How about words without repeating entries? Given n ≥ k, define the falling factorial
by

(n)k := n(n− 1)(n− 2) · · · (n− k + 1).

There are k numbers being multiplied in the above definition. When n = k, we have
(n)n = n!, so this generalizes the factorial function.

Theorem 2.11. If |A| = n and n ≥ k, then there are (n)k different words of length k in A
which do not have any repeating entries.

7

Proof. Start with a permutation of A. The first k elements in that permutation give us a
word of length k with no repeating entries. But we’ve overcounted because we don’t care how
the remaining n − k things we threw away are ordered. In particular, this process returns
each word exactly (n− k)! many times, so our desired quantity is

n!

(n− k)!
= (n)k. �

Some further things to think about:

• A small city has 10 intersections. Each one could have a traffic light or gas station
(or both or neither). How many different configurations could this city have?
• Using that (n)k = n · (n − 1)k−1, can you find a proof for Theorem 2.11 that uses

induction?

2.5. Choice problems. We finish up with some related counting problems. Recall we
showed that an n-element set has exactly 2n subsets. We can refine this problem by asking
about subsets of a given size.

Theorem 2.12. The number of k-element subsets of [n] is(
n

k

)
=

n!

k!(n− k)!
.

There are many ways to prove this, but we’ll just do one for now:

Proof. In the last section on words, we identified subsets of [n] with words of length n on
{0, 1}, with a 1 in position i if and only if i belongs to the subset. So the number of subsets
of size k are exactly the number of words with exactly k instances of 1. This is the same as
arranging n − k 0’s and k 1’s from the section on permutations. In that case, we saw the
answer is n!

(n−k)!k! . �

Corollary 2.13.
n∑

k=0

(
n

k

)
= 2n.

Proof. The left hand side counts the number of subsets of [n] of some size k where k ranges
from 0 to n. But all subsets of [n] are accounted for and we’ve seen that 2n is the number
of all subsets of [n]. �

Here’s an important identity for binomial coefficients (we interpret
(

n
−1

)
= 0):

Proposition 2.14 (Pascal’s identity). For any k ≥ 0, we have(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
.

Proof. The right hand side is the number of subsets of [n + 1] of size k. There are 2 types
of such subsets: those that contain n+ 1 and those that do not. Note that the subsets that
do contain n + 1 are naturally in bijection with the subsets of [n] of size k − 1: to get such
a subset, delete n + 1. Those that do not contain n + 1 are naturally already in bijection
with the subsets of [n] of size k. The two sets don’t overlap and their sizes are

(
n

k−1

)
and(

n
k

)
, respectively. �

8

An important variation of subset is the notion of a multiset. Given a set S, a multiset
of S is like a subset, but we allow elements to be repeated. Said another way, a subset of S
can be thought of as a way of assigning either a 0 or 1 to an element, based on whether it
gets included. A multiset is then a way to assign some non-negative integer to each element,
where numbers bigger than 1 mean we have picked them multiple times.

Example 2.15. There are 10 multisets of [3] of size 3:

{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 2, 2}, {1, 2, 3},
{1, 3, 3}, {2, 2, 2}, {2, 2, 3}, {2, 3, 3}, {3, 3, 3}.

Aside from exhaustively checking, how do we know that’s all of them? Here’s a trick: given a
multiset, add 1 to the second smallest values (including ties) and add 2 to the largest value.
What happens to the above:

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5},
{1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}.

We get all of the 3-element subsets of [5]. The process is reversible using subtraction, so
there is a more general fact here. �

Theorem 2.16. The number of k-element multisets of [n] is(
n+ k − 1

k

)
.

Proof. We adapt the example above to find a bijection between k-element multisets of [n] and
k-element subsets of [n+k−1]. Given a multiset S, sort the elements as s1 ≤ s2 ≤ · · · ≤ sk.
From this, we get a subset {s1, s2 + 1, s3 + 2, . . . , sk + (k − 1)} of [n+ k − 1]. On the other
hand, given a subset T of [n+ k − 1], sort the elements as t1 < t2 < · · · < tk. From this, we
get a multiset {t1, t2− 1, t3− 2, . . . , tk − (k− 1)} of [n]. I will omit the details that these are
well-defined and inverse to one another. (But you should make sure that you could do this
if asked.) �

Some additional things:

• From the formula, we see that
(
n
k

)
=
(

n
n−k

)
. This would also be implied if we could

construct a bijection between the k-element subsets and the (n− k)-element subsets
of [n]. Can you find one?
• Given variables x, y, z, we can form polynomials. A monomial is a product of the

form xaybzc, and its degree is a+ b+ c. How many monomials in x, y, z are there of
degree d? What if we have n variables x1, x2, . . . , xn?

3. Binomial theorem and generalizations

3.1. Binomial theorem. The binomial theorem is about expanding powers of x+ y where
we think of x, y as variables. For example:

(x+ y)2 = x2 + 2xy + y2,

(x+ y)3 = x3 + 3x2y + 3xy2 + y3.

9

Theorem 3.1 (Binomial theorem). For any n ≥ 0, we have

(x+ y)n =
n∑

i=0

(
n

i

)
xiyn−i.

Here’s the proof given in the book.

Proof. Consider how to expand the product (x + y)n = (x + y)(x + y) · · · (x + y). To get a
term, from each expression (x + y), we have to either pick x or y. The final term we get is
xiyn−i if the number of times we chose x is i (and hence the number of times we’ve chosen y
is n − i). The number of times this term appears is therefore the number of different ways
we could have chosen x exactly i times. For each way of doing this, we can associate to it a
subset of [n] of size i: the number j is in the subset if and only if we chose x in the jth copy
of (x+ y). We have already seen that the number of subsets of [n] of size i is

(
n
i

)
. �

Here’s a proof using induction.

Proof. For n = 0, the formula becomes (x+ y)0 = 1 which is valid.
Now suppose the formula is valid for n. Then we have

(x+ y)n+1 = (x+ y)(x+ y)n = (x+ y)
n∑

i=0

(
n

i

)
xiyn−i.

For a given k, there are at most 2 ways to get xkyn+1−k on the right side: either we get it
from x ·

(
n

k−1

)
xk−1yn−k+1 or from y ·

(
n
k

)
xkyn−k. If we add these up, then we get

(
n+1
k

)
by

Pascal’s identity. �

We can manipulate the binomial theorem in a lot of different ways (taking derivatives with
respect to x or y, or doing substitutions). This will give us a lot of new identities. Here are
a few of particular interest (some are old):

Corollary 3.2. 2n =
n∑

i=0

(
n

i

)
.

Proof. Substitute x = y = 1 into the binomial theorem. �

This says that the total number of subsets of [n] is 2n which is a familiar fact from before.

Corollary 3.3. For n > 0, we have 0 =
n∑

i=0

(−1)i
(
n

i

)
.

Proof. Substitute x = −1 and y = 1 into the binomial theorem. �

If we rewrite this, it says that the number of subsets of even size is the same as the number
of subsets of odd size. It is worth finding a more direct proof of this fact which does not rely
on the binomial theorem.

Corollary 3.4. n2n−1 =
n∑

i=0

i

(
n

i

)
.

Proof. Take the derivative of both sides of the binomial theorem with respect to x to get
n(x+ y)n−1 =

∑n
i=0 i

(
n
i

)
xi−1yn−i. Now substitute x = y = 1. �

10

It is possible to interpret this formula as the size of some set so that both sides are different
ways to count the number of elements in that set. Can you figure out how to do that? How
about if we took the derivative twice with respect to x? Or if we took it with respect to x
and then with respect to y?

3.2. Multinomial theorem.

Theorem 3.5 (Multinomial theorem). For n, k ≥ 0, we have

(x1 + x2 + · · ·+ xk)n =
∑

(a1,a2,...,ak)
ai≥0

a1+···+ak=n

(
n

a1, a2, . . . , ak

)
xa11 x

a2
2 · · ·x

ak
k .

Proof. The proof is similar to the binomial theorem. Consider expanding the product (x1 +
· · ·+ xk)n. To do this, we first have to pick one of the xi from the first factor, pick another
one from the second factor, etc. To get the term xa11 x

a2
2 · · ·x

ak
k , we need to have picked x1

exactly a1 times, picked x2 exactly a2 times, etc. We can think of this as arranging n objects,
where ai of them have “type i”. In that case, we’ve already discussed that this is counted
by the multinomial coefficient

(
n

a1,a2,...,ak

)
. �

By performing substitutions, we can get a bunch of identities that generalize the one from
the previous section. I’ll omit the proofs, try to fill them in.

kn =
∑

(a1,a2,...,ak)
ai≥0

a1+···+ak=n

(
n

a1, a2, . . . , ak

)
,

0 =
∑

(a1,a2,...,ak)
ai≥0

a1+···+ak=n

(1− k)a1
(

n

a1, a2, . . . , ak

)
,

nkn−1 =
∑

(a1,a2,...,ak)
ai≥0

a1+···+ak=n

a1

(
n

a1, a2, . . . , ak

)
.

4. Inclusion-exclusion

Example 4.1. Suppose we have a room of students, and 14 of them play basketball, 10 of
them play football. How many students play at least one of these? We can’t answer the
question because there might be students who play both. But we can say that the total
number is 24 minus the amount in the overlap.

B F

Alternatively, let B be the set who play basketball and let F be the set who play football.
Then what we’ve said is:

|B ∪ F | = |B|+ |F | − |B ∩ F |.

11

New situation: there are additionally 8 students who play hockey. Let H be the set of
students who play hockey. What information do we need to know how many total students
there are?

B F

H

Here the overlap region is more complicated: it has 4 regions, which suggest that we need 4
more pieces of information. The following formula works:

|B ∪ F ∪H| = |B|+ |F |+ |H| − |B ∩ F | − |B ∩H| − |F ∩H|+ |B ∩ F ∩H|.

To see this, the total diagram has 7 regions and we need to make sure that students in each
region get counted exactly once in the right side expression. For example, consider students
who play basketball and football, but don’t play hockey. They get counted in B, F , B ∩ F
with signs +1, +1, −1, which sums up to 1. How about students who play all 3? They get
counted in all terms with 4 +1 signs and 3 −1 signs, again adding up to 1. You can check
the other 5 to make sure the count is right. �

The examples above have a generalization to n sets, though the diagram is harder to draw
beyond 3.

What’s the pattern so far? We have to add up all of the sizes of the sets involved, then
we subtract off the sizes of all ways of intersecting two of them, and then we add back the
sizes of all ways of intersecting three of them. How does this continue? In general, the signs
continue to alternate (add, subtract, add, subtract, ...) and at the jth step, we have to
consider all sizes of intersecting j different sets.

Theorem 4.2 (Inclusion-Exclusion). Let A1, . . . , An be finite sets. Then

|A1 ∪ · · · ∪ An| =
n∑

j=1

(−1)j−1
∑

{i1,i2,...,ij}

|Ai1 ∩ Ai2 ∩ · · · ∩ Aij |,

where the second sum is over all j-element subsets of [n], i.e., we add up the sizes of all
possible ways of intersecting j of the sets A1, . . . , An.

Proof. We just need to make sure that every element x ∈ A1 ∪ · · · ∪ An is counted exactly
once on the right hand side. Let S = {s1, . . . , sk} be all of the indices such that x ∈ Asr .
Then x belongs to Ai1 ∩· · ·∩Aij if and only if {i1, . . . , ij} ⊆ S. So the relevant contributions
for x is a sum over all of the nonempty subsets of S:

∑
T⊆S

(−1)|T |−1 = −
|S|∑
n=1

(
|S|
n

)
(−1)n.

However, since |S| > 0, we have shown before that
∑|S|

n=0

(|S|
n

)
(−1)n = 0, so the sum above

is
(|S|

0

)
= 1. �

12

We can also prove this by induction on n. Can you see how?
We use this to solve the derangements problem. Here is a version of that problem: suppose

we have n people and they all put their hat into a box. The hats are redistributed to the
people at random. What is the chance that nobody gets their own hat back? (We won’t
solve this exactly, but see how to get a close approximation to the answer.)

First, we can think of a permutation of [n] as the same thing as a bijection f : [n] → [n]
(given the bijection, f(i) is the position in the permutation where i is supposed to appear).
A derangement of size n is a permutation such that for all i, i does not appear in position
i. Equivalently, it is a bijection f such that f(i) 6= i for all i.

Theorem 4.3. The number of derangements of size n is

n∑
i=0

(−1)i
n!

i!
.

Proof. It turns out to be easier to count the number of permutations which are not derange-
ments and then subtract that from the total number of permutations. For i = 1, . . . , n,
let Ai be the set of bijections f such that f(i) = i. Then the set of non-derangements is
A1 ∪ · · · ∪ An. To apply inclusion-exclusion, we need to count the size of Ai1 ∩ · · · ∩ Aij

for some choice of indices i1, . . . , ij. This is the set of bijections f : [n] → [n] such that
f(i1) = i1, . . . , f(ij) = ij. The remaining information to specify f are its values outside of
i1, . . . , ij, which we can interpret as a bijection of [n] \ {i1, . . . , ij} to itself. So there are
(n− j)! of them. So we get

|A1 ∪ · · · ∪ An| =
n∑

j=1

(−1)j−1
∑
{i1,...,ij}

|Ai1 ∩ · · · ∩ Aij |

=
n∑

j=1

(−1)j−1
∑
{i1,...,ij}

(n− j)!

=
n∑

j=1

(−1)j−1
(
n

j

)
(n− j)!

=
n∑

j=1

(−1)j−1
n!

j!
.

Remember that we have to subtract this from n!. So the final answer simplifies as so:

n!−
n∑

j=1

(−1)j−1
n!

j!
=

n∑
j=0

(−1)j
n!

j!
. �

The problem with formulas coming from inclusion-exclusion is the alternating sign. It can
generally be hard to estimate the behavior of the quantity as n grows. For example, binomial
coefficients

(
n
i

)
(for fixed i) limit to infinity as n goes to infinity. However, the alternating

sum
n∑

i=0

(−1)i
(
n

i

)

13

is 0. For derangements, we can use the following observation. We have a formula for the
exponential function

ex =
∞∑
i=0

xi

i!
.

If we plug in x = −1 and only take the terms up to i = n, then we get the number of de-
rangements divided by n!, i.e., the percentage of permutations that are derangements. From
calculus, taking the first n terms of a Taylor expansion is supposed to be a good approxi-
mation for a function, so for n→∞, the proportion of permutations that are derangements
is e−1 ≈ .368, or roughly 36.8%.

5. Graph theory, introduction

The origin of graph theory is said to be Euler’s solution of the bridges of Königsberg
problem.

(Taken from https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png)

The problem was to find a path which starts and ends at the same point, and crosses each
bridge exactly once.

There are a few things to note here: the lengths of the bridges are not important, nor are
the sizes of the landmasses. All that really matters is: between any two landmasses, how
many bridges connect them? So we can simplify the picture dramatically:

A

C B

D

This notion can be abstracted with the definition of a graph. Given a set V , let
(
V
2

)
denote

the set of 2-element subsets of V .

Definition 5.1. A graph G is a pair of sets (V,E) where V is the set of vertices, and E
is a multiset from V ∪

(
V
2

)
, called the edges. The edges in V are called loops. Given an

edge, the vertices that uses are called its endpoints (they could be the same in the case of
a loop). If there are no loops and each pair of vertices has at most one edge between them,
then the graph is called simple. �

We think of elements of V as representing nodes, and the elements of E in
(
V
2

)
tell us which

nodes are connected to each other (and how many times). We can think of the elements of E
in V as representing self-connections, so we can draw them as loops beginning and ending at

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png

14

the same node. Note there is nothing about locations of lengths in this definition. So while
we can draw a graph as we have done above, such a pictorial representation is not unique.

Example 5.2. The picture above represents the graph with V = {A,B,C,D} and
E = {{A,B}, {B,D}, {B,C}, {A,C}, {A,C}, {C,D}, {C,D}}. �

5.1. Eulerian trails.

Definition 5.3. A walk in a graphG is a sequence v0, e1, v1, e2, v2, . . . , ek, vk which alternates
between vertices and edges such that for all i = 1, . . . , k, vi−1 and vi are the endpoints of
ei (so they must be different unless ei is a loop). The beginning of the walk is v0 and the
ending is vk. A walk is closed if v0 = vk. The length of the walk is k.

A trail is a walk that does not repeat edges (we treat multiple edges between two vertices
as distinct). An Eulerian trail is a trail that uses every edge exactly once.

A path is a trail that does not repeat vertices (in particular, it has no loops). �

Now we can phrase the Königsberg problem in our new language: does the Königsberg
graph have a closed Eulerian trail?

We need a few more definitions before answering this question.

Definition 5.4. Given a vertex v in a graph G, its degree deg(v) is the number of edges
connected to v, except that loops at v must be counted twice. In other words, it is 2 times
the number of loops at v plus the number of non-loop edges at v. �

Heuristically, we can think of an edge as being comprised of two “halves”, each one con-
nected to one of the endpoints. This perspective is partially why we want to count loops
twice: we really want to know how many half-edges are connected to v. Alternatively, imag-
ine zooming in really close to a vertex. In that case, the two pieces of a loop would look like
two separate edges.

Definition 5.5. A graph is connected if, for any two vertices v and w, there exists a walk
that begins at v and ends at w.

In general, we can put an equivalence relation on the vertices of G, declaring that v ∼ w if
there exists a walk beginning at v and ending at w. The equivalence classes of this relation
are the connected components of G. Each connected component is a connected graph. �

The following will be convenient to use repeatedly. I’ll leave it as homework to prove.

Proposition 5.6. If there is a walk from x to y, then there is also a path from x to y.

Theorem 5.7 (Euler). Let G be a connected graph. Then G has a closed Eulerian trail if
and only if every vertex has even degree.

Proof. If G has a closed Eulerian trail, then along this path, each vertex is entered the same
number of times that it is exited. Since none of these edges are being repeated, we see that
the number of “half-edges” being used must be even, and so deg(v) is even for all v.

Now we have to prove the opposite implication. So let G be a connected graph such that
deg(v) is even for all vertices v. We need to show that G has a closed Eulerian trail. We
will prove this statement by induction on the number of edges of G. If the number is 0, then
G is a single vertex, and there is nothing to prove so our base case is done. Now suppose
we have proven it for all connected graphs such that deg(v) is even for all v that have ≤ n
edges and let G be a graph such that deg(v) is even for all v and has n+ 1 edges.

15

Step 1. Find any closed trail. To do this, begin with any edge. If it is a loop, we are
done. Otherwise, it connects v and w with v 6= w. Since deg(w) is even, there must be
another edge that we can follow. Continue doing this until we hit a vertex we’ve seen before.
Then our path will contain a closed trail. Let H be the graph consisting of the vertices and
edges used on this trail.

Step 2. Delete the edges in H from G. From the reasoning in the first part of the proof,
this will change the degree of each vertex by an even amount, so the resulting graph G′ still
has all vertices with even degree. However, it may not be connected. But by induction, each
connected component has a closed Eulerian trail.

Step 3. Each connected component of G′ must share a vertex with one in H. If not,
pick a connected component that violates this condition and pick a vertex v in it and pick a
vertex w in H. In the original graph G, there is a path between v and w since G is connected.
If we follow this path from v, there is a first time that it hits a vertex in H, and the edges
up to this point aren’t in H (because all edges of H go between two vertices in H), which
means that some vertex in H is in the same connected component as v.

So we can attach the closed Eulerian trails from each component to H. The resulting path
is a closed Eulerian trail for G. �

If a graph G has a closed Eulerian trail, we can “rotate” it so that it begins and ends at
any particular vertex that we like. Formally, if our closed Eulerian trail is v0, e1, v1, . . . , vk,
then we get another closed Eulerian trail v1, e2, . . . , vk, e1, v1. The important thing is that
vk = v0 since the trail is closed. We can repeat this rotation as many times as needed to get
the desired starting vertex and starting edge.

Corollary 5.8. Let G be a connected graph and let v, w ∈ V be different vertices. Then
there is an Eulerian trail starting at v and ending at w if and only if deg(v), deg(w) are both
odd, and deg(x) is even for all other vertices x ∈ V .

Proof. Add a new edge f = {v, w} to G to get a graph G′. Then the degree of every vertex
of G′ has even degree, so by the previous theorem, it has a closed Eulerian trail. By the
above comments, we can rotate this trail until f is the starting edge. Delete f from this
closed trail, and the result is an Eulerian trail of G which starts at one of v, w and ends at
the other one. If it’s backwards, we can always reverse the trail. �

Finally, a related statement about vertices of odd degree.

Theorem 5.9. Let G be a graph. There are an even number of vertices with odd degree.

Proof. Let v1, . . . , vn be the vertices of G and let di = deg(vi). Note that d1+ · · ·+dn is twice
the number of edges, since each edge contributes 1 to the degree of each of its endpoints (still
true for loops). In particular, d1 + · · · + dn is even. If there are an odd number of vertices
with odd degree, then the sum would be odd, and hence we know that it is not the case. �

5.2. Directed graphs. Our definition of graph models when things are related by putting
an edge between them. For example, our nodes could represent places and the edges could
represent whether or not they are connected by a road. This suggests an equal relation
between the two, but we might want to be able to talk about roads that only go in one
direction, for example. For that, we can use the notion of a directed graph. Intuitively,
this is the same as a graph except each edge now has an orientation, i.e., it has a direction
placed on it. Formally, instead of thinking of (non-loop) edges as a 2-element subset of the

16

vertex set, they are now elements of V ×V (where the entries are unequal; loops then become
the case when the entries are equal).

The definition of a walk in a directed graph is changed in the following way: it is now a
sequence v0, e1, . . . , vk where ei = (vi−1, vi), i.e., it has to be compatible with the orientations
of the edges. All of the other definitions can then be adapted once we’ve made this change.
We define a directed graph G to be strongly connected if for all v, w ∈ V , there is a walk
from v to w.

Given a vertex v, its in-degree indeg(v) is the number of edges of the form (x, v) for
some x ∈ V and its out-degree outdeg(v) is the number of edges of the form (v, x) for some
x ∈ V . Note that each loop at v contributes 1 to its in-degree and 1 to its out-degree.

The directed version of Euler’s theorem is the following.

Theorem 5.10. Let G be a strongly connected directed graph. Then G has a closed Eulerian
trail if and only if indeg(v) = outdeg(v) for all v ∈ V .

The proof is fairly similar to the proof of the undirected version, so we won’t repeat it
here.

5.3. Hamiltonian cycles. The last section was about walks that use all of the edges exactly
once. Now we consider the dual idea where we use all of the vertices exactly once (but not
necessarily all edges).

Definition 5.11. Let G be a graph. A cycle is a closed trail such that each vertex is used
at most once (except the starting and ending vertex is used twice – we won’t keep repeating
this for the following few definitions). In other words, it’s a closed walk that doesn’t repeat
vertices or edges. A Hamiltonian cycle is a closed trail such that each vertex is used
exactly once. A Hamiltonian path is a path that uses every vertex exactly once (the
difference is that it is not required to be closed). �

Remark 5.12. We would like to have a simple criterion which determines if a graph has a
Hamiltonian cycle or path like Euler’s theorem. However, it is known that determining if a
graph has a Hamiltonian cycle or path is an “NP-complete problem”. This means that there
is unlikely to even be an efficient algorithm to determine this, so we probably don’t expect
any simple condition. �

While we don’t have a good condition for the existence of Hamiltonian cycles, we can give
stronger conditions which imply their existence.

Theorem 5.13. Let n ≥ 3. Let G be a simple graph with n vertices and assume that
deg(v) ≥ n/2 for all vertices v. Then G has a Hamiltonian cycle.

Proof. Assume that the theorem is false. Then there exists a simple graph G with n ≥ 3
vertices such that deg(v) ≥ n/2 for all vertices and G does not have a Hamiltonian cycle.
We want a maximal counterexample in the following sense: if there is an edge we can add
to G such that the result does not have a Hamiltonian cycle, then do it and keep doing it
until it’s not possible. We end up with a counterexample, call it G′ with n vertices which
still has deg(v) ≥ n/2 and no Hamiltonian cycle, with the additional property that adding
any new edge will introduce a Hamiltonian cycle.

First, G′ must be missing at least one edge: if every edge is present, then there is clearly
a Hamiltonian cycle. Let x, y be a pair of vertices such that {x, y} is not an edge. Let G′′ be
the result of adding {x, y}. By construction, G′′ has a Hamiltonian cycle, and it must use

17

{x, y} (otherwise G′ has one too). In particular, if we consider the rest of the edges, we have
a Hamiltonian path starting at x and ending at y using only edges from G′. Let z1, . . . , zn
be the order in which the vertices are visited on this path (so z1 = x and zn = y).

Now define

S = {i | 2 ≤ i ≤ n− 1, {zi+1, x} is an edge in G′}
T = {i | 2 ≤ i ≤ n− 1, {zi, y} is an edge in G′}.

Then |S| ≥ deg(x)− 1 ≥ n/2− 1 (since we aren’t counting z2 though it could be connected
by an edge to x) and |T | = deg(y) ≥ n/2. Note that S ∪ T ⊆ {2, . . . , n − 1} and so
|S ∪ T | ≤ n− 2, so we have (by inclusion-exclusion)

|S ∩ T | = |S|+ |T | − |S ∪ T | ≥ n

2
− 1 +

n

2
− (n− 2) = 1

and so S ∩ T 6= ∅. Pick i ∈ S ∩ T . Then {x, zi+1} and {y, zi} are both edges of G′. That
means that G′ does in fact have a Hamiltonian cycle: the order is

x = z1, z2, . . . , zi, y = zn, zn−1, . . . , zi+2, zi+1,

which is a contradiction. �

The condition deg(v) ≥ n/2 is way too strong though. Consider the graph with vertices
[n] and edges {{1, 2}, {2, 3}, {3, 4}, . . . , {n, n + 1}, {1, n}}, so if you draw it, it is a cycle of
length n. Then this has a Hamiltonian cycle but the degree of each vertex is only 2. You’ll
see another example in homework where the condition is too strong to be applicable.

5.4. Graph isomorphisms. Graph isomorphisms formalize what it means for two graphs
to “look the same” without literally being equal to each other. For example, consider the
following 3 graphs

1 2

3 4

1 4

2 3

Formally, both graphs have vertex set [4], the first graph has edges {{1, 2}, {1, 3}, {2, 4}, {3, 4}}
and the second graph has edges {{1, 2}, {1, 4}, {3, 4}, {2, 3}}, so they are not the same. How-
ever, consider the bijection f : [4] → [4] defined by f(1) = 1, f(2) = 4, f(3) = 2, f(4) = 3.
Applying this function to the first graph gives the second graph.

Definition 5.14. Let G = (V,E) and H = (V ′, E ′) be graphs. A function f : V → V ′ is a
graph isomorphism if it is a bijection, and for all x, y ∈ V , the number of edges between
x and y equals the number of edges of f(x), f(y) ∈ V ′.

If a graph isomorphism exists between G and H, then G and H are isomorphic.
If G = H, then a graph isomorphism is called an automorphism. �

If f defines a graph isomorphism between G and H, then f−1 : V ′ → V defines a graph
isomorphism between H and G. Furthermore, if we have an isomorphism from H to a third
graph I, then we can compose these isomorphisms to get one between G and I.

Many properties of graphs are preserved by isomorphism, meaning that if G has that
property then so does any graph which is isomorphic to G. Heuristically, any property or
quantity which does not depend on the specific way that the vertices are named will be
preserved by isomorphism. Such properties are called isomorphism invariants. Some
examples:

18

• Number of vertices
• Number of edges
• The multiset of degrees of vertices
• Whether or not a graph has a Hamiltonian cycle.

Remark 5.15. Given two graphs, there is a naive algorithm for determining whether or not
they are isomorphic: first, check if they have the same number of vertices, and if so, test all
bijections between their vertex sets. But this is a pretty bad algorithm. One can ask whether
or not there is an efficient (polynomial-time) algorithm and this is an open problem. �

Automorphisms of G capture its symmetries and can be used to simplify proofs and
provide justification for the phrase “without loss of generality...”. Here is an example which
illustrates what I mean.

Example 5.16. Consider the graph G with vertices [n] (n ≥ 3) and edges {i, i + 1} for
i = 1, . . . , n− 1 and {1, n}. Consider the following statement: every path v0, e1, v1, e2, v2 of
length 2 can be extended uniquely to a Hamiltonian cycle. When v0 = 1, v1 = 2, v2 = 3, we
can prove this directly since the unique way to extend to a Hamiltonian cycle is to continue
traveling around the graph, i.e., take vi = i+ 1 for i = 0, . . . , n− 1 and vn+1 = 1.

But there are other paths of length 2. However, up to applying an automorphism, they
can be turned into the one we just analyzed. Namely, “rotation” gives us an automorphism,
i.e., f(i) = i − 1 for i = 2, . . . , n and f(1) = n as does “reflection”, i.e., f(1) = 1 and
f(i) = n + 2 − i for i 6= 1. If we repeatedly apply rotation, we can turn v0 into 1. Then
either v1 = 2 (in which case v2 = 3 and we’re done) or v1 = n, in which case one application
of reflection will turn this into what we want. �

How many simple graphs with n vertices are there up to isomorphism? The numbers
for n = 1, . . . , 8 are 1, 2, 4, 11, 34, 156, 1044, 12346. There probably isn’t a simple formula in
general.

6. Trees

6.1. Definition and basic properties.

Definition 6.1. A tree is a connected simple graph that does not contain a cycle. A forest
is a simple graph that does not contain a cycle. �

The difference is that forests are not required to be connected, but they can be. So every
tree is a forest, but not vice versa. The connected components of a forest are all trees, so we
can think of forests as being made up of trees (hence the name).

Example 6.2. Here are two examples of trees on 5 vertices:

�

We’ll give a few different ways to characterize trees.

19

Theorem 6.3. Let G be a connected simple graph. Then G is a tree if and only if for all
vertices x, y ∈ V , there is exactly one path going from x to y.

Proof. Suppose that G is a tree. Since G is connected, for any vertices x, y, there is at least
one walk going from x to y, and hence there is at least one path going from x to y (by a
homework problem). We claim that there is always exactly one path. If not, then let x, y
be a pair that has at least 2 paths between them. Furthermore, among all such pairs, pick
x, y so that the length of a path between them is as small as possible. Let e1, . . . , ek be the
shortest possible path between them (in case of ties, pick any) and let f1, . . . , f` be the next
shortest path between them. I claim that e1, . . . , ek, f`, f`−1, . . . , f1 is a cycle, i.e., it doesn’t
visit the same vertex more than once (except x). This is left as a homework problem.

Now suppose that G is not a tree. Since G is connected, it contains a cycle. We can split
this into two pieces to get two different paths that go between the same pair of vertices. �

Definition 6.4. Let G be a simple connected graph. Then G is minimally connected if
deleting any edge causes it to become disconnected. �

Theorem 6.5. Let G be a connected simple graph. Then G is a tree if and only if G is
minimally connected.

Proof. First suppose that G is a tree. If G has 1 vertex, there’s nothing to say. If it has
more, then it has at least one edge, pick any of them {x, y}. This edge gives a path from x
to y, so by uniqueness (previous theorem), there isn’t another one. So if we delete this edge,
there’s no way to get from x to y, which means the result is disconnected. Since this is true
for any edge, G is minimally connected.

Now suppose that G is not a tree. Since G is connected, that means there is a cycle. If
we delete any edge {x, y} from that cycle, the resulting graph is still connected: for any two
vertices a, b, if we had to use that edge to get from a to b before, then we can instead replace
that part with the rest of the cycle. So G is not minimally connected. �

Proposition 6.6. Let G be a connected simple graph with n vertices. Then G has at least
n− 1 edges.

Proof. Consider deleting all of the edges of G and then re-adding them one at a time. At
first, we have n connected components since all of the vertices are isolated. Every time we
add an edge, we are either connecting two vertices in the same component (in which case
the number of components stays the same), or we are connecting two vertices in different
components (in which case the two components get merged into one). We conclude that to
go from n connected components to 1 connected component, we will need to add at least
n− 1 edges. �

Corollary 6.7. Let F be a forest with n vertices and m edges. Then it has n−m connected
components.

Proof. Go through the proof above. Each time we add an edge, we are decreasing the number
of connected components by 1 (otherwise we’d introduce a cycle). �

Theorem 6.8. Let G be a connected simple graph with n vertices. Then G is a tree if and
only if G has exactly n− 1 edges.

Proof. Suppose that G is a tree. In particular, it is a forest so by the previous corollary, it
has n−m = 1 connected components where m is the number of edges. Solving for m gives
m = n− 1.

20

Now suppose that G has exactly n − 1 edges. Pick one and remove it. By the previous
proposition, the result cannot be connected since it has too few edges. This means that G
is minimally connected, and hence a tree. �

We have given several different properties of connected simple graph to be a tree. Here is
the summary:

Theorem 6.9. Let G be a connected simple graph with n vertices. The following conditions
are all equivalent:

(1) G is a tree.
(2) G has no cycles.
(3) For all vertices x, y ∈ V , there is exactly one path starting at x and ending at y.
(4) G is minimally connected.
(5) G has n− 1 edges.

In other words, if any of these properties hold, then all of them hold. If any of them fail,
then they all fail.

6.2. Adjacency matrix. If G is a graph with n vertices, then the adjacency matrix is an
n× n matrix which encodes G. There are 2 versions, depending on if G is a directed graph
or a plain graph.

If G is a graph with vertices v1, . . . , vn, then set aij to be the number of edges between vi
and vj. Define its adjacency matrix AG to be the n × n matrix whose (i, j) entry is aij.
Note that AG is a symmetric matrix since aij = aji.

Going back to the Königsberg graph, it has the following adjacency matrix (using the
ordering A,B,C,D):

A

C B

D

0 1 2 0
1 0 1 1
2 1 0 2
0 1 2 0

If G is a directed graph with vertices v1, . . . , vn, then set aij to be the number of edges

between vi and vj that are going from vi to vj and again AG is the n×n matrix whose (i, j)
entry is aij. In general, AG need not be symmetric.

For example, here’s a directed graph and its adjacency matrix:

v1 //

��

v2

~~
v3

0 1 1
0 0 1
0 0 0

Theorem 6.10. Let G be a graph (directed or not) with vertices v1, . . . , vn. Let A = AG be
its adjacency matrix. Then for all integers k > 0, the number of walks of length k starting
at vi and ending at vj is (Ak)i,j.

Proof. We prove this by induction on k.

21

When k = 1, the (i, j) entry of A is defined so that it is the number of edges going from
vi to vj (in both the directed and undirected cases).

Now suppose the result is known for k, we need to prove it for k + 1. Let B = Ak. Then

(Ak+1)i,j = (BA)i,j =
n∑

`=1

Bi,`A`,j

by definition of matrix multiplication. The term Bi,`A`,i counts the following: the number
of pairs of walks from vi to v` of length k and the number of walks from v` to vj of length 1.
For each such pair, we can concatenate the walks to get a walk from vi to vj of length k+ 1.
Every such walk is accounted for if we sum over all ` since the last step before reaching vj
is some v` (and we’re including all of them). In particular, the sum counts the number of
walks of length k + 1 from vi to vj, so we’ve proven the statement for k + 1. �

Remark 6.11. A general fact from linear algebra (probably not discussed in Math 18) is
that an n× n symmetric matrix whose entries are all real numbers is always diagonalizable
(this is the spectral theorem, and you can use it in this course if needed). In particular, this
applies to AG in the undirected case. So we can write AG = BDB−1 where D is a diagonal
matrix whose entries are the eigenvalues of AG. In particular, Ak

G = BDkB−1. So if we want
general formulas for the number of walks of length k as k varies, it’s enough to diagonalize
AG. So we see that the eigenvalues of the adjacency matrix are relevant for counting walks,
which is surprising.

In the directed case, AG need not be diagonalizable in general. �

6.3. Deletion-contraction. Let G be a graph and e an edge of G which is not a loop.
There are two important operations (deletion and contraction) that we can perform on G
using e and which are useful for certain kinds of induction proofs.

The deletion of e is denoted G \ e and is a graph with the same vertices as G, and the
same edges, except we don’t use e.

The contraction of e is denoted G/e. Let e = {x, y}. To define it, take the vertices of G,
replace the two vertices x, y with a single vertex that we will call z. For each edge in G that
does not use x or y, add it into G/e. For each vertex a different from x and y, the number
of edges between a and z in G/e is the number of edges between a and x plus the number
of edges between a and y. The number of loops at z is the number of loops at x plus the
number of loops at y plus the number of edges between x and y different from e.

To visualize this, pretend we are shrinking e until x and y become the same point (hence
the use of the word contraction).

Here’s a small example to illustrate. Say our graph is as follows (I put numbers on the
edges to denote multiple edges):

G = 3

24 3

v1 v2

v3 v4

22

Let e be one of the edges between the bottom two vertices. Then

G \ e = 2

24 3

v1 v2

v3 v4

G/e =

4 5

2

v3 v4

z

Visually, G/e is the result of shrinking the bottom edge of G towards its midpoint. The two
other bottom edges become loops.

6.4. Matrix-tree theorem.

Definition 6.12. Let G = (V,E) be a graph. A subgraph of G is a graph G′ = (V ′, E ′)
such that V ′ ⊆ V and E ′ ⊆ E.

A subgraph G′ is called a spanning tree of G if V ′ = V and G′ is a tree. �

Let τ(G) (that letter is TAU) be the number of spanning trees of G. Our goal in this
section is to find a formula for τ(G).

Let v1, . . . , vn be the vertices of G. Define DG be the n × n diagonal matrix whose
ith diagonal is the number of edges connected to vi (loops only get counted once). The
Laplacian matrix of G is defined to be LG = DG − AG. Next, given any n× n matrix B
and 1 ≤ i ≤ n, let B[i] be the matrix obtained from B by deleting the ith column and ith
row.

Theorem 6.13 (Kirchhoff’s matrix tree theorem). For any 1 ≤ i ≤ n, we have τ(G) =
det(LG[i]). (By convention, the determinant of the 0× 0 matrix is 1.)

Example 6.14. Taking G from the previous section, AG and LG are as follows:

G = 3

24 3

v1 v2

v3 v4

AG =

0 3 4 3
3 0 0 2
4 0 0 0
3 2 0 0

 , LG =

10 −3 −4 −3
−3 5 0 −2
−4 0 4 0
−3 −2 0 5

Taking i = 1 in the theorem, the determinant of the bottom right 3 × 3 matrix is 84. We
can also check directly that G has 84 spanning trees. �

Remark 6.15. Loops are annoying to deal with in this definition, but they are forced on us
in some situations when we contract an edge. A spanning tree cannot use any loops, so for
the purposes of computing spanning trees, we can delete any loops a graph has and forget
about them.

Also note that adding a loop at vi doesn’t even change the matrix LG: it gets counted
once in the (i, i)-entry in DG and also gets subtracted once in the (i, i)-entry of −AG. �

Although it sounds more general to let i be anything between 1 and n, if we remember
that we’re allowed to order the vertices any way we please, then it’s enough to prove the

23

theorem when i = 1 since the taking any other value of i would correspond to i = 1 for a
different way to label the vertices. We’ll usually assume i = 1 since it makes the notation a
little simpler to explain (but remember it’s not less general).

To prove the matrix-tree theorem, we will prove that both sides satisfy the same recurrence,
namely a deletion-contraction type recurrence.

Proposition 6.16. Let e be an edge {v1, vr} for some 2 ≤ r ≤ n. Then

det(LG[1]) = det(LG\e[1]) + det(LG/e[1]).

When we contract the edge e, the vertices v1, vr become the same vertex (which we will
name z) and we use the ordering for G/e where z comes before all of the other vertices.

Example 6.17. Continue taking G as in the previous example and r = 2, let e be one of
the edges connecting v1 and v2 as in the previous section. Here are the matrices mentioned
in the proposition:

LG[1] =

 5 0 −2
0 4 0
−2 0 5

 , LG\e[1] =

 4 0 −2
0 4 0
−2 0 5

 , LG/e[1] =

[
4 0
0 5

]
We can check by computing that their determinants are 84, 64, 20, so the equation in the
proposition checks for this example. However, here is a better way to check the equation,
which can be used to prove the identity in general. Introduce the following matrix

M =

 1 0 0
0 4 0
−2 0 5

 .
The general pattern for M : we replace the first row of LG[1] by (1, 0, 0, . . . , 0). Then detM =
det(LG/e[1]) which we can see by expanding along the first row. Furthermore, LG[1], LG\e[1],
and M agree in all rows except the first, and the first row of LG[1] is the sum of the first
rows of the other two. By the multilinearity property of determinants, this tells us that
detLG[1] = detLG\e[1] + detM . �

Proof. We first assume r = 2. Define an (n− 1)× (n− 1) matrix M as follows. The bottom
right (n− 2)× (n− 2) matrix will be a copy of LG/e[1]. The first row will be (1, 0, 0, . . . , 0).
The remaining entries are Mi,1 where 2 ≤ i ≤ n − 1 and we set it to be LG\e[1]i,1. Then
det(M) = det(LG/e[1]) (see this by expanding det(M) along the first row).

Next, we claim that M,LG\e[1], LG[1] are all identical in rows 2, . . . , n − 1. This is clear
outside of the first column because they all record information about vertices v3, . . . , vn which
are exactly the same in G,G \ e,G/e. For the first column, these involve information about
edges between v2 and v3, . . . , vn. Again, this is the same between G and G \ e and we have
defined M to have the same entries as LG\e[1].

Finally, the first row of LG[1] is the sum of the first row of M and the first row of LG\e[1]
(I’ll leave this to you to fill in the details why). By multilinearity of determinants, this
implies

det(LG[1]) = det(LG\e[1]) + det(M).

But detM = det(LG/e[1]), so we get the identity we want.
For the case of general r, the same argument works (though the notation is a little more

complicated), or we note that swapping the rows 2 and r and also columns 2 and r does not
affect the determinant. �

24

Proposition 6.18. Let e be any edge of G. Then

τ(G) = τ(G \ e) + τ(G/e).

Proof. Write e = {x, y}. τ(G \ e) counts the number of spanning trees in G that do not use
the edge e while τ(G/e) counts the number of spanning trees in G that do use the edge e.

The second requires some more explanation. First, let n be the number of vertices of G
and let z be the new vertex formed by merging x and y. If we have a spanning tree T of
G that uses e and we contract e, the remaining edges of T become a spanning tree of G/e:
T has n − 1 edges and is connected, T/e has n − 2 edges and n − 1 vertices and is still
connected. We can reverse this: by the way we defined it, there is a bijection between the
edges of G/e that aren’t loops at z and the edges of G whose endpoints aren’t {x, y}. So if
we have a spanning tree T ′ of G/e, take the edges in G that correspond to the edges of T ′

and add e to get a spanning tree of G. We just defined a bijection between spanning trees
of G using e and spanning trees of G/e. One thing to note: spanning trees never use more
than one edge with the same endpoints, and never use loops; edges with the same endpoints
as e correspond to loops in G/e.

Every spanning tree of G either uses e or doesn’t, so we get the desired identity. �

Now we can finish the proof.

Proof of Theorem 6.13. We prove the theorem by induction on the number of non-loop edges
of G. For the base case, let G be a graph with no non-loop edges. If the number of vertices
is 1, then τ(G) = 1, and if it has more than 1 vertex, then τ(G) = 0. In either case, LG

is the n × n matrix consisting of 0’s. If n = 1, then LG[1] is the 0 × 0 matrix and so has
determinant 1, which is what we want. Otherwise, LG[i] is a 0 matrix of positive size so has
determinant 0 for each i, again which is what we want.

Now assume that we have proven the statement for all graphs with ≤ n edges, and let G
be a graph with n+ 1 edges. If v1 has no non-loop edges touching it, then G is disconnected
and hence has no spanning trees. On the other hand, LG[1] is the Laplacian for the graph
obtained from G by deleting v1. In particular, the sum of its rows is 0, so det(LG[1]) = 0.
Otherwise, there is some r so that {v1, vr} = e is an edge in G.

Then both G/e and G \ e have less non-loop edges than G, so know by induction that

τ(G \ e) = det(LG\e[1]), τ(G/e) = det(LG/e[1]).

However, we have previously proven the identities

τ(G) = τ(G \ e) + τ(G/e), det(LG[1]) = det(LG\e[1]) + det(LG/e[1]).

Combining this with the previous identities gives us

τ(G) = det(LG[1]). �

There is also a version of the matrix-tree theorem that uses eigenvalues instead of determi-
nants. Below we will use the fact that if G is connected, then exactly one of the eigenvalues
of LG is 0.

Theorem 6.19 (Matrix tree theorem, eigenvalue version). Let G be a connected graph with n
vertices and let λ1, . . . , λn−1 be the nonzero eigenvalues of LG. Then τ(G) = λ1λ2 · · ·λn−1/n.

Remark 6.20. This is a purely linear algebra proof once we have the determinant version
of the matrix-tree theorem. Since this isn’t a linear algebra class, I’ll just tell you what goes
into it. First, given a square matrix A with eigenvalues µ1, . . . , µn, a principal minor of size

25

k is the determinant of a k × k square submatrix where you choose the same indices for the
rows and columns. A general fact is that the sum of all principal minors of size k is the sum
of µi1µi2 · · ·µik over all k-element subsets {i1, . . . , ik} of [n] (this generalizes the statement
that the trace of A is the sum of the eigenvalues when k = 1 and that the determinant of A is
the product of all of them when k = n). Now apply this to A = LG and k = n−1. All of the
principal minors are detLG[i] for some i and each one is τ(G) by the matrix-tree theorem.
The sum of the product of eigenvalues (over all choices of n − 1 of them) is λ1 · · ·λn−1 (all
other subsets use the 0 eigenvalue) so we get nτ(G) = λ1 · · ·λn−1. �

We finish with two general examples.

Example 6.21. Let G = Kn be the complete graph on n vertices v1, . . . , vn. This means
that there is exactly 1 edge between any pair of distinct vertices. The number of spanning
trees counts the number of labeled trees: these are trees on n vertices whose vertices are
numbered 1, . . . , n. We will use both versions of the matrix-tree theorem to compute τ(Kn).

First, LG has n − 1 in the diagonals and −1 in all off-diagonal entries. Now delete the
first row and column. The result is an (n− 1)× (n− 1) matrix which looks like:

LG[1] =

n− 1 −1 −1 · · · −1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...
−1 −1 −1 · · · n− 1

Remember that adding a row to another row does not change the determinant of a matrix.
Our goal is to do these row operations to make it so the first column only has one nonzero
entry. Add each of the rows 2, . . . , n− 1 to the first row to get the matrix:

1 1 1 · · · 1
−1 n− 1 −1 · · · −1
−1 −1 n− 1 · · · −1
...
−1 −1 −1 · · · n− 1

Finally, add the first row to all of the other rows to get

1 1 1 · · · 1
0 n 0 · · · 0
0 0 n · · · 0
...
0 0 0 · · · n

Now expand the determinant along the first column to see that τ(G) = nn−2. This is also
known as Cayley’s theorem.

Now let’s compute τ(G) using the eigenvalues of LG. Instead of computing them from
the characteristic polynomial, let’s instead find a basis of eigenvectors. Let ei be the column
vector with a 1 in position i and 0’s elsewhere. Then the following are all eigenvectors:

e1 + e2 + · · ·+ en, e1 − e2, e2 − e3, e3 − e4, . . . , en−1 − en.
The first one has eigenvalue 0 and the others have eigenvalue n. We can also check they are
linearly independent (but I’ll leave the details to you). So this tells us that the eigenvalues

26

are 0 and n (multiplicity n− 1). The eigenvalue version then tells us that τ(G) = nn−1/n =
nn−2. �

Example 6.22. For our second example, pick two integers n,m ≥ 1 and let G = Km,n be
the complete bipartite graph. This has vertices v1, . . . , vm and w1, . . . , wn and there is one
edge between vi and wj for all choices of i and j, and no other edges. (This is an example of
a bipartite graph, which we will introduce later.) To write down the adjacency matrix, we
will order the vertices as v1, . . . , vm, w1, . . . , wn. Then LG has a natural block structure:

LG =

n 0 · · · 0 −1 −1 · · · −1
0 n · · · 0 −1 −1 · · · −1
...
0 0 · · · n −1 −1 · · · −1
−1 −1 · · · −1 m 0 · · · 0
−1 −1 · · · −1 0 m · · · 0
...
−1 −1 · · · −1 0 0 · · · m

This is a matrix of size (m+ n)× (m+ n). It will be convenient to delete the last row and
column instead of the first. It looks the same, except now there are only n − 1 m’s in the
bottom right corner. We proceed as before. Add rows 2, . . . ,m+ n− 2 to the first row:

1 1 · · · 1 0 0 · · · 0
0 n · · · 0 −1 −1 · · · −1
...
0 0 · · · n −1 −1 · · · −1
−1 −1 · · · −1 m 0 · · · 0
−1 −1 · · · −1 0 m · · · 0
...
−1 −1 · · · −1 0 0 · · · m

Now add the first row to the last n− 1 rows to get

1 1 · · · 1 0 0 · · · 0
0 n · · · 0 −1 −1 · · · −1
...
0 0 · · · n −1 −1 · · · −1
0 0 · · · 0 m 0 · · · 0
0 0 · · · 0 0 m · · · 0
...
0 0 · · · 0 0 0 · · · m

Expand along the first column to get τ(G) = nm−1mn−1. We can also use eigenvalues.
Again, let ei be the column vector with 1 in position i and 0’s elsewhere. The following are
an eigenbasis for LG:

n+m∑
i=1

ei,

n∑
i=1

ei −
n+m∑
j=n+1

ej, {ei − ei+1 | 1 ≤ i ≤ m− 1}, {ej − ej+1 | m+ 1 ≤ j ≤ m+ n}.

27

I’ll leave the details of computing the eigenvalues of these vectors and showing they are
linearly independent to you. �

6.5. Minimum-weight spanning trees.

Proposition 6.23. If G is connected, then it has at least one spanning tree.

Proof. If G is a tree, then we are done. Otherwise, G is not minimally connected, so we can
remove some edge in such a way that the resulting graph is still connected. Continue doing
this until we get down to a tree. �

Suppose we are given a graph G = (V,E) together with a real-valued function on the edge
set w : E → R≥0 which takes non-negative values. Given a spanning tree T ⊆ G, define the
weight w(T) to be the sum of w(e) over all edges e ∈ T . Our goal is to find a tree that
has the smallest possible weight (there could be multiple solutions). Such a tree is called a
minimum-weight spanning tree.

Example 6.24. The vertices might represent cities and the edges represent possible railroad
tracks that could be built between them. The function w could represent the cost for building
that track. If we wanted to connect all of the cities by rail by spending as little money as
possible, then we want a minimum-weight spanning tree. �

[? Steven: put in picture ?]
Here is Kruskal’s greedy algorithm. Let G = (V,E) be a connected graph with n vertices.

• Set T = (V,∅).
• If T is a spanning tree, then terminate. Otherwise, consider all possible edges that

we can add to T so that the result does not have a cycle and add one that has the
smallest possible weight to T . Repeat this step until T is a spanning tree.

We have to be careful that the second step is well-defined. At each step, we have some
subgraph T that has no cycles and isn’t a spanning tree. Why is it always possible that we
can find an edge to add to it so that we don’t create a cycle? (Left for homework.)

Theorem 6.25. The result of Kruskal’s greedy algorithm is a minimum-weight spanning
tree.

In order to prove this, we need to know the “exchange property”.

Lemma 6.26 (Exchange property). Let F and F ′ be forests with the same set of vertices.
Assume that F ′ has strictly more edges than F does. Then there exists an edge e of F ′ not
belonging to F such that adding e to F results in a forest.

Proof. Suppose this is false. Then for all edges e of F ′, F ∪{e} has a cycle. In particular, if x
and y are connected by an edge in F ′, then they are in the same connected component of F .
Being in the same connected component is a transitive property, so this also implies that if x
and y are in the same connected component of F ′, then they are also in the same connected
component of F . Let c, c′ be the number of connected components of F, F ′, respectively.
This means that c′ ≥ c. However, for a forest, the number of connected components is
the number of vertices minus the number of edges by Corollary 6.7. If n is the number of
vertices, then we see that n− c′ ≤ n− c but this contradicts that F ′ has strictly more edges
than F . �

Now we can prove the theorem about Kruskal’s greedy algorithm.

28

Proof of Theorem 6.25. Let T be the output of Kruskal’s greedy algorithm. Suppose it is
not a minimum-weight spanning tree. Then there is another spanning tree H such that
w(H) < w(T). Let h1, . . . , hn−1 be the edges of H ordered so that w(h1) ≤ · · · ≤ w(hn−1)
and similarly let t1, . . . , tn−1 be the edges of T ordered so that w(t1) ≤ · · · ≤ w(tn−1).

Let S be the set of 1 ≤ k ≤ n − 1 such that
∑k

i=1w(hi) <
∑k

i=1w(ti). Note that S is
non-empty because n−1 ∈ S. Let m be the minimal element of S. Note that m > 1 because
otherwise it means that w(h1) < w(t1) which contradicts how we picked the first edge in the
algorithm. By definition of m, we have

m−1∑
i=1

w(hi) ≥
m−1∑
i=1

w(ti) and
m∑
i=1

w(hi) <
m∑
i=1

w(ti).

This is only possible if w(hm) < w(tm).
Let T ′ be the forest with all vertices of G and the edges t1, . . . , tm−1 and let H ′ be the

forest with all vertices of G and the edges h1, . . . , hm. By the exchange property, there is
some hi such that hi is different from the t1, . . . , tm−1 and the edges t1, . . . , tm−1, hi form a
forest, i.e., has no cycle. However, w(hi) ≤ w(hm) < w(tm), which contradicts our choice of
edge to add in the mth step of the greedy algorithm. In particular, H cannot exist, so T is
a minimum-weight spanning tree. �

Remark 6.27. The context of the greedy algorithm can be expanded quite a bit. The
keypoint is the exchange property. Here is another familiar situation where it holds: let S, T
be linearly independent sets of vectors in a vector space and assume that |T | > |S|. Then
there is always a choice of vector v ∈ T such that S ∪ {v} is linearly independent (try to
prove it).

In particular, imagine we had a collection of vectors that spans our vector space and each
one has a weight and our goal is to find a basis from this collection that minimizes the
total weight. The greedy algorithm, adapted suitably, tells us that we can successively pick
vectors of smallest possible weight that don’t create a linear dependence with the vectors
we’ve already chosen and the result will have the desired property.

Structures that satisfy the exchange property are called matroids. �

7. Coloring and matching

7.1. Colorings and chromatic polynomials.

Definition 7.1. Let G be a graph and k a positive integer. A proper k-coloring is a
function f : V → [k] such that for every each {v, v′}, f(v) 6= f(v′).

The chromatic number χ(G) is the smallest k such that G has a proper k-coloring.
We let χG(k) be the number of proper k-colorings of G. �

Heuristically, we think of the numbers 1, . . . , k as colors, like red, blue, green, etc. A
proper k-coloring is a way to assign colors so that adjacent vertices never have the same
color. We are free to use colors multiple times and we don’t have to use all of them.

Note that if G has loops, then it has no proper colorings, so this section will only be
interesting for loopless graphs.

As an example, the vertices of our graph could be wireless routers and an edge is present
if the routers are close enough to interfere if they broadcast at the same frequency. So the
colors would be different frequencies to use and a proper coloring corresponds to assignments

29

so that no interference occurs, and the chromatic number is the least number of different
frequencies that we need to use.

Example 7.2. Here is a proper 3-coloring of a length 5 cycle:

Note that a proper 2-coloring isn’t possible. So this graph has chromatic number 3. �

Here are some easy properties of chromatic numbers. They all follow from the definitions,
so I won’t write out the proofs.

Proposition 7.3. (1) If G has a proper k-coloring, then χ(G) ≤ k.
(2) If G has a clique of size r, meaning there are r vertices of G all of which are connected

to each other by an edge, then χ(G) ≥ r.
(3) If H is a subgraph of G, then χ(H) ≤ χ(G).
(4) If G has n vertices (and no loops), then χ(G) ≤ n.

Lemma 7.4. Let x, y be two vertices of G with exactly one edge e between them. Then

χG(k) = χG\e(k)− χG/e(k).

Proof. By the definitions, a proper k-coloring of G is the same thing as a proper k-coloring
of G \ e where x and y get different labels. On the other hand, proper k-colorings of G \ e
where x and y receive the same color are naturally in bijection with proper k-colorings of
G/e: if z is the result of contracting x and y, make its color the common color of x and
y. The identity χG(k) = χG\e(k) − χG/e(k) is a translation of what we just said: proper
k-colorings of G are the same thing as proper k-colorings of G \ e once we subtract off all of
those that give x and y the same color. �

The assumption about x and y having exactly one edge between them is a little bit
annoying, but it’s easy to get around. Let G be a graph. Construct a simple graph G whose
vertices are the same as G and where x and y have an edge in G if they have at least one
edge in G. In other words, multiple edges in G get replaced by a single edge in G.

Lemma 7.5. χG(k) = χG(k).

Proof. The definition of proper k-coloring only involves labeling vertices and the conditions
on them only depend on whether or not two vertices have the same color if they’re connected
by an edge (but we don’t care how many edges). �

Now we’re ready to prove the main result:

Theorem 7.6. If G is a graph with n vertices, then χG(k) is a polynomial in k of degree n
(more precisely, there is a unique polynomial of degree n whose values agree with χG(k) at
all non-negative integer inputs k).

30

Proof. By Lemma 7.5, it is enough to prove this for simple graphs G. We proceed by
induction on the number of edges. If there are no edges in G, then any labeling of the
vertices is a proper k-coloring, so χG(k) = kn which is certainly a polynomial of degree n.

Now assume we’ve proved this for graphs with < m edges and let G be a graph with m
edges. Let e be an edge of G. Then G \ e and G/e both have < m edges. So χG\e(k) is a
polynomial in k of degree n and G/e is a polynomial in k of degree n − 1. By Lemma 7.4,
χG(k) = χG\e(k)− χG/e(k), so χG(k) is a polynomial in k of degree n. �

For notation, we will write χG(z) for this polynomial (z is now a variable) and we will
use k to denote non-negative integers. This is the chromatic polynomial of G. Then the
chromatic number is the smallest positive integer k such that χG(k) 6= 0.

Here are some easy properties:

Proposition 7.7. (1) G has at least one vertex if and only if χG(0) = 0.
(2) G has at least one edge if and only if χG(1) = 0. (The converse is clearly true.)
(3) If G has an odd length cycle, then χG(2) = 0. (The converse is also true, as we will see

when we discuss bipartite graphs.)

How about a property that determines if χG(3) = 0? This is an NP-complete problem, so
there likely isn’t a simple criterion to determine this for a general graph.

Example 7.8. Let’s compute χG(z) for the square:

G = 1

2 3

4

It will follow that χ(G) = 2 (or you can figure that out by staring at the square). Here are
some different approaches:

(1) For the first way, we just use the definition. If we want to properly k-color G, then 1
can be colored anything, so there are k choices for it. Now the color on 2 and 4 have
to be different from the color assigned to 1, so there are k−1 choices for each. There
are two cases to consider: if the colors of 2 and 4 are the same, then the color for 3
has k − 1 choices. If they’re not the same, then the color for 3 has k − 2 choices. So
the total number of colorings is: k(k− 1)2 + k(k− 1)(k− 2)2. (The first term counts
the number of colorings where 2 and 4 have the same color and the second counts
the number of colorings where 2 and 4 have different colors.) We can simplify it to
get

χG(k) = k(k − 1)(k2 − 3k + 3).

(2) For the second way, we’ll use deletion-contraction. Let e = {1, 4}. Then

G \ e = 1

2 3

4

31

Its chromatic polynomial is simple to compute: for a proper k-coloring, 1 has k
choices, 2 has k − 1 choices (any color different from the one given to 1), similarly 3
has k − 1 choices, and similarly, 4 has k − 1 choices. So

χG\e(k) = k(k − 1)3.

The contraction by e is

G/e = 5

2 3

I called the new vertex 5. This is also easy to compute: for a proper k-coloring, 5
has k choices, 2 has k − 1 choices, and 3 has k − 2 choices (any color different from
the one given to 2 and 5 which are different from each other). So

χG/e(k) = k(k − 1)(k − 2).

So using Lemma 7.4, we get

χG(k) = χG\e(k)− χG/e(k)

= k(k − 1)3 − k(k − 1)(k − 2)

= k(k − 1)(k2 − 3k + 3). �

Example 7.9. Here are some families of graphs where we can give explicit formulas for
χG(z) and χ(G). I won’t explain how to get the derivation, you should see if you can figure
out how to do it.

(1) The complete graph on n vertices is denoted Kn and is defined so that every pair
of vertices has an edge between them. Then

χKn(z) = z(z − 1)(z − 2) · · · (z − n+ 1),

χ(Kn) = n.

(2) The cycle Cn of length n has vertices v1, . . . , vn and edges {i, i+1} for i = 1, . . . , n−1
and {1, n}. Then

χCn(z) =

{
(z − 1)n + (z − 1) if n is even

(z − 1)n − (z − 1) if n is odd
,

χ(Cn) =

2 if n is even

1 if n = 1

3 if n is odd and n ≥ 3

.

(3) If G is a tree with n vertices, then

χG(z) = z(z − 1)n−1

χ(G) =

{
1 if n = 1

2 if n > 1
. �

32

7.2. Bipartite graphs.

Definition 7.10. A graph G is bipartite if it has a proper 2-coloring. Equivalently, G is
bipartite if there is a subset X ⊆ V such that no 2 vertices in X are joined by an edge, and
no 2 vertices in Y = V \X are joined by an edge. We will call (X, Y) a bipartition of G if
this holds. �

Note that a bipartite graph could have many bipartitions. For example, if G has no edges
at all, then any choice of X will work.

Example 7.11. Every forest is bipartite. A cycle of even length is bipartite. However, a
cycle of odd length is not bipartite. �

Given two vertices v, w, let d(v, w) be the smallest length of a path from v to w. This is
the distance between v and w. We can give a nice criterion for a graph to be bipartite. But
first we need a preliminary lemma.

Lemma 7.12. Suppose a graph G has a closed walk of odd length. Then G has a cycle of
odd length.

Proof. Pick a closed walk of odd length of shortest possible size v0, e1, v1, . . . , vk. Suppose
that this is not a cycle, so that there are 0 < i < j < k such that vi = vj. Then
vi, ei+1, vi+1, . . . , ej, vj is a closed walk and so is the result of deleting vi, ei+1, vi+1, . . . , ej
from the first walk. Since both of their lengths add up to k, which is odd, one of these closed
walks must have odd length. But that contradicts the fact that our original choice is the
shortest possible size. �

Note that if you make the above claim with “odd” replaced with “even”, the proof above
does not work (can you see where it goes wrong?). In fact, the modified statement is false:
let G be a triangle. Then it has a closed walk of length 6 (go around the triangle twice) but
no cycle of even length.

Theorem 7.13. A graph G is bipartite if and only if it does not contain any cycles of odd
length.

Proof. If G has a cycle of odd length, let H be that cycle. We know that χ(H) = 3, and
χ(G) ≥ χ(H) = 3, so G cannot be bipartite.

Now assume that G has no cycles of odd length. We will show that G has a proper 2-
coloring using “red” and “blue”. We first assume that G is connected. Start by picking a
vertex v. We color the vertices as follows: for each vertex w, if d(v, w) is even, color w red,
and if d(v, w) is odd, color w blue. We claim that this is a proper 2-coloring. If not, then
there is some edge {w,w′} such that w and w′ have the same color. Then we have a closed
walk of odd length: take a path of shortest length from v to w, then use the edge {w,w′},
then take a path of shortest length from w′ to v. These two paths have the same parity, so
the total number of edges used is odd. From the previous lemma, this implies that G has
an odd cycle, so {w,w′} can’t exist, which means we have a proper 2-coloring.

Finally, if G is not connected, then none of its connected components has a cycle of odd
length, so each of them has a proper 2-coloring by the above argument. Coloring each
component then gives a proper 2-coloring of the whole graph. �

33

7.3. Matchings.

Definition 7.14. Let G = (V,E) be a graph. A subset S ⊆ E is a matching if every vertex
is the endpoint of at most one edge of S. In other words, no two edges in S share a common
vertex. A matching is a perfect matching if every vertex is the endpoint of exactly one
edge of S. �

For example, let’s say the vertices are students in a class and edges represent pairs of
students who are willing to work together on a project. A matching then consists of pairing
off some of the students in teams of two (who are willing to work together), and a perfect
matching means that we’ve paired off all of the students. We’ll be mostly interested in
matchings in bipartite graphs. We have a modified definition in this case.

Definition 7.15. Let G be a bipartite graph with bipartition (X, Y). A perfect matching
of X into Y is a matching S of G such that every vertex of X is the endpoint of some edge
in S. �

This situation comes up a lot. For example, X might represent doctors and Y might
represent positions in hospitals. An edge between a doctor and a position exists if the
hospital is willing to hire that person for that job. A perfect matching of X into Y in this
situation means finding a job for each doctor. On the other hand, a perfect matching of Y
into X would mean filling each job with a qualified doctor. Our goal is to give a theorem
which guarantees the existence of a perfect matching of X into Y .

Definition 7.16. Given a subset T of the vertices of a graph, define NG(T), the neighbor
set of T , to be the set of vertices which are connected by an edge to some vertex in T . �

Theorem 7.17 (Hall’s marriage theorem). Let G be a bipartite graph with bipartition (X, Y).
Then there is a perfect matching of X into Y if and only if for all subsets T ⊆ X, we have
|T | ≤ |NG(T)|.

In our doctor example above, this says there is a perfect matching if for every group of k
doctors, the number of jobs for which at least one of them is qualified is at least k. This is
clearly a necessary condition, so the real content is that this is also enough.

Proof. If there is a perfect matching of X into Y , then clearly |T | ≤ |NG(T)| for all subsets
T ⊆ X: for t ∈ T , let t′ ∈ Y be the vertex matched with it. Then t′ ∈ NG(T) and t′ 6= s′ for
t 6= s by definition of matching.

Now suppose that |T | ≤ |NG(T)| for all subsets T ⊆ X. We need to show that G has a
perfect matching of X into Y . We will prove this statement by induction on |X|. The base
case is |X| = 1. In this case, X = {x} and our assumption says that x has at least one
neighbor in Y , so picking any of them gives the perfect matching. For the induction step,
assume that the statement is true whenever |X| < d and consider the setup with |X| = d.
We consider two cases.

• Case 1: Suppose that for all subsets T ⊂ X with T 6= X, we have |T | < |NG(T)|.
In this case, pick any x ∈ X and then pick y ∈ Y such that {x, y} is an edge (this

exists because |NG({x})| ≥ 1). Let H be the subgraph of G with x, y deleted and
{x, y} deleted. Then H is a bipartite graph with bipartition (X ′, Y ′) where X ′ =
X\{x} and Y ′ = \{y}. For any subset T ⊆ X ′, we have |NH(T)| ≥ |NG(T)|−1 since,
at worst, y might have been in NG(T). However, |NG(T)−1 ≥ |T | by the assumption
in this case (note T 6= X because T does not contain x). So |NH(T)| ≥ |T |, and by

34

induction, H has a perfect matching of X ′ into Y ′. Now add the edge {x, y} back to
get a perfect matching of X into Y .
• Case 2: There is some nonempty subset B ⊂ X with B 6= X and |B| = |NG(B)|.

In this case, form two graphs H1 and H2: H1 is the subgraph of G with vertices
B ∪ NG(B) and whatever edges go between them, and H2 is the result of deleting
B ∪NG(B) from G along with any edges that touch those vertices.

First, H1 is bipartite with bipartition (B,NG(B)). Since B 6= X, we have |B| < d.
Furthermore, if T ⊆ B, then NH1(T) = NG(T), so by assumption we have |T | ≤
|NH1(T)| for all T . By induction, H1 has a perfect matching of B into NG(B).

Next, H2 is bipartite with bipartition (X ′, Y ′) where X ′ = X \ B and Y ′ = Y \
NG(B). Let T ⊆ X ′ be a subset. Then NG(B ∪ T) = NG(B)∪NH2(T) and NG(B)∩
NH2(T) = ∅ by definition of H2. Furthermore, B ∩ T = ∅, so we have

|B|+ |T | = |B ∪ T | ≤ |NG(B ∪ T)| = |NG(B) +NH2(T)| = |NG(B)|+ |NH2(T)|.
In particular, |B| + |T | ≤ |NG(B)| + |NH2(T)|. Since |B| = |NG(B)|, we conclude
that |T | ≤ |NH2(T)|.

So we have verified the hypothesis of the theorem for H2. Since B is nonempty,
|X ′| < |X|, so we may apply the induction hypothesis to conclude that H2 has a
perfect matching of X ′ into Y ′.

Combining these two perfect matchings gives one for G. �

If know that a perfect matching of X into Y exists, how do we find one? Or more generally,
how do we find a matching with as many edges as possible? We could check all possibilities,
but let’s discuss one way which isn’t just brute force.

Definition 7.18. Let G be a bipartite graph and let M be a matching.
A path in G is called M-alternating if its edges alternate between edges in M and edges

not in M (we don’t specify which one it starts or ends with).
An M -alternating path is called M-augmenting if its first and last edges are not in M .
Finally, a matching is called a maximum matching if there is no other matching with

more edges than it. �

Theorem 7.19. Let G be a bipartite graph and let M be a matching. Then M is a maximum
matching if and only if there are no M-augmenting paths.

Proof. First, given an M -augmenting path, we can construct a bigger matching: just swap
whether or not the edges in this path are in M . So if M is maximum, then there are no
M -augmenting paths.

Now assume that there are no M -augmenting paths in G. We need to prove that M is
a maximum matching. Suppose that M ′ is a maximum matching of G. We need to show
that M and M ′ have the same number of edges. Let H be the subgraph of G with the
same vertices but only the edges which appear in exactly one of M or M ′. Each connected
component of H has to be a path or a cycle (an isolated vertex is a length 0 cycle): Start
with any edge (say in M), if there is another edge touching it, it comes from M ′. Any
new edge touching that one must be in M , etc. Eventually we can’t continue finding more
edges, and then go back to the first edge and go in “reverse” if you can. You either end up
with a path or something which has revisited a vertex. The second case has to be a cycle,
otherwise you’d have 3 edges touching at one vertex which contradicts that both M and M ′

are matchings.

35

Since G is bipartite, all of these cycles have even length. Each path is M -alternating
and also M ′-alternating as well. If any path had odd length, then it would be either M -
augmenting (but we assumed they didn’t exist) or M ′-augmenting (but they also don’t exist
because M ′ is a maximum matching and we can use the argument in the first paragraph), so
they don’t appear. This means that H consists of even length cycles and even length paths,
which means that M and M ′ have the same number of edges: the number of edges of M is
the number of edges that M and M ′ have in common plus half the number of edges of H
(and same for M ′). Hence M is also maximum. �

This gives a better way to build maximum matchings than just brute force: start with
any matching M , then look for M -augmenting paths. If they exist, swap the edges in the
path like in the proof and continue. If they don’t exist, we know we’re done.

7.4. Stable matchings. We end this section with a discussion of stable matchings, which
take into account preferences. Continuing with the doctor example, we don’t want to just
put people into jobs just because they are qualified to do them. Instead, we should try to
take into account individual rankings. First, let’s assume that |X| = |Y | = n. Furthermore,
attached to each vertex x ∈ X is a ranking of the vertices of Y , and similarly, each vertex
y ∈ Y has a ranking of the vertices of X. For the doctors, a ranking is their ranked list of
the available jobs in order of preference, and similarly, for the jobs.

With the above setup, a stable matching is a perfect matching of X into Y such that
for every x ∈ X and y ∈ Y that are not matched, either x prefers its current match over y,
or y prefers its current match over x. In other words, a matching fails to be stable if there
is some pair (x, y) which prefer each other over their current matches. In our example, a
perfect matching has placed each doctor into a job. Some doctors might prefer jobs they
didn’t get over the one they get. Stable here means that whenever doctor x preferred job
y over their current job, the person filling job y was better for the job than x is, and vice
versa: if job y has doctor x working in it but doctor x′ has a better fit, then doctor x′ has a
better job than y (in their own personal ranking).

The Gale-Shapley algorithm finds a stable matching. We’ll use doctors and hospitals
to explain it. It proceeds in rounds:

• In the first round, each doctor sends an application to their favorite hospital. Each
hospital ranks the applications and says “maybe” to the best candidate and “no” to
the rest.
• In all future rounds, any doctor with a “maybe” does nothing. All others send an

application to their favorite hospital that have not already rejected them. Each
hospital ranks new applicants against their current “maybe” and then says “maybe”
to top candidate and “no” to the rest (possibly including one that used to have a
“maybe”).
• This keeps going until each doctor has a “maybe”. In that case, each “maybe”

becomes a “yes”.

I’ll leave you to think about why this algorithm terminates and correctly produces a stable
matching.

Note the asymmetry in the problem: we could have instead had hospitals soliciting their
favorite doctors to work for them. The result can be different, and in fact, this setup gives
an advantage to the hospitals. Furthermore, this algorithm actually has been used before
to assign jobs to graduating medical students. One more thing: there are definitely flaws

36

with this algorithm in the sense that it is possible for hospitals to lie about their preferences
in order to get a better candidate in some cases at the expense of making things worse for
other hospitals.

8. Planarity

There’s an old puzzle related to the topic of planarity: there are 3 houses in a row and
3 utilities (gas, water, electric) in a row below them. Can we connect each house to each
utility without crossing any lines? We’ll formulate this in terms of graph theory and use it
to answer the question.

8.1. Definitions. A planar graph is, roughly speaking, a graph which can be drawn in
the plane (for example, a piece of paper) in such a way that edges do not overlap each
other (except at their endpoints). The basic instructive example is the complete graph K4.
Sometimes it is drawn as follows:

and the two diagonal edges overlap. However, here are two different ways to draw it so that
none of the edges overlap:

In the left drawing, one of edges is “curved”: this is allowed. In the right drawing, all of the
edges are straight lines. It is a theorem that planar graphs can always be drawn so that the
edges are all straight lines, but we won’t use this and it takes a bit of effort to prove this, so
we won’t say anything more about it.

It’s easy enough to see that if G is the simple graph associated to G (i.e., multiple edges
are replaced with a single edge and loops are deleted), then G is planar if and only if G is
planar. So we will restrict our attention to simple graphs since it’s no less general but might
make notation easier to deal with.

When you draw a graph in the plane, you have separated the plane into different regions.
Another way to say this: if you delete the graph from the plane, the regions are the different
connected pieces. These are called faces. Note that the boundary of every face is a cycle of
the graph. In the right drawing of K4 above, the faces are the 3 inside triangles and then
there is 1 “outside” face, so 4 in total. You can also see there are 4 faces in the left drawing.
We’ll see shortly that the number of faces is an isomorphism-invariant of the graph.

Once you draw a graph G in the plane, there is something called the dual graph G∗: the
vertices are the faces of G, and two faces are connected by an edge if they share an edge.
This notion is useful for translating the problem of coloring maps into problems of coloring
graphs (the countries are faces), but otherwise we won’t do much with this definition.

37

8.2. Some equations and inequalities.

Theorem 8.1 (Euler). Let G be a connected planar graph with n vertices, m edges, and f
faces. Then n−m+ f = 2.

Proof. We prove this by induction on m, the number of edges. If m = 0, then G is a single
vertex since it is connected. In that case, n = f = 1, and the equation is satisfied.

Now assume the equation holds for all graphs with < m edges and let G be a graph with
m edges. We consider 2 separate cases:

• If G is a tree, then m = n − 1 and f = 1 (there’s just the outside face) and we see
again the identity holds.
• If G is not a tree, then it fails to be minimally connected, so there is some edge
e = {x, y} such that G′ = G \ {e} is still connected. In particular, there is a cycle
of G that uses e. Relative to our planar drawing for G, pick such a cycle that has
no edges going inside of it. Then this is a face of G. There is also another face of G
which is on the other side of G. When we remove e, these two faces merge into one.

So, G′ has n vertices, m− 1 edges, and f − 1 faces. By induction, n− (m− 1) +
(f − 1) = 2, but the left hand side simplifies to n − m + f , so the identity is also
valid for G. �

Corollary 8.2. Let G be a planar graph with c connected components, n vertices, m edges,
and f faces. Then n−m+ f = c+ 1.

Proof. We’ll do induction on c, the case c = 1 being Theorem 8.1. Let G be a graph with
c connected components G1, . . . , Gc. Say Gc has n′ vertices, m′ edges, and f ′ faces. Let H
be the result of removing Gc. Then H is still planar and has n− n′ vertices, m−m′ edges,
but f − (f ′ − 1) faces: we subtract f ′ − 1 because Gc and H have the same “outside” face.
By induction: n − n′ − (m −m′) + f − (f ′ − 1) = c. By Theorem 8.1, we also know that
n′ −m′ + f ′ = 2. Adding these two equations gives n−m+ f = c+ 1. �

A simple planar graph with n vertices can’t have arbitrarily many edges. We can give a
bound in terms of n, but can do much better if we use the girth. For n ≥ 3, let Cn be the cycle
graph with n vertices (so it has n vertices v1, . . . , vn and n edges {v1, v2}, {v2, v3}, . . . , {vn, v1}).
Definition 8.3. A simple graph G has girth at least g if it does not contain a subgraph
isomorphic to C3, C4, . . . , Cg−1. (If g = 3, this condition is vacuous, so every simple graph
has girth ≥ 3.) We say that G has girth equal to g if it has girth at least g and also contains
a subgraph isomorphic to Cg. If G has no cycles, then it has infinite girth. �

If H is a subgraph of G, then the girth of H is at least as big as the girth of G.

Theorem 8.4. Let G be a simple planar graph with n vertices, m edges, and finite girth
≥ g. Then

m ≤ g

g − 2
(n− 2).

Proof. Let c be the number of connected components of G. Let N be the number of pairs
(e, F) where e is an edge on the boundary of the face F . Since G has finite girth g, the
boundary of every face of G has ≥ g edges (the boundary of the outside face is the boundary
of G), so N ≥ gf . Next, each edge is on the boundary of at most 2 faces, so N ≤ 2m. We
conclude that 2m ≥ gf . By Corollary 8.2,

f = c+ 1− n+m ≥ 2− n+m,

38

so 2m ≥ g(2− n+m). Rearranging terms we get g(n− 2) ≥ (g− 2)m. Now divide by g− 2
(note that g − 2 ≥ 1 because g ≥ 3 by the way we defined girth). �

If G has infinite girth, then it’s a forest, and we already know that m ≤ n − 1, so the
restriction of finite girth isn’t a big deal.

Corollary 8.5. Let G be a simple planar graph with n vertices and m edges. If n ≥ 3, then
m ≤ 3n− 6.

Proof. If G is a forest, then m ≤ n−1 ≤ 3n−6 (the second inequality holds because n ≥ 3).
Otherwise, G has finite girth ≥ 3 so m ≤ 3(n− 2) by Theorem 8.4. �

The following result will be useful when we study colorings of planar graphs:

Corollary 8.6. If G is a simple planar graph, then it has a vertex with degree ≤ 5.

Proof. Suppose not. Then every vertex of G has degree ≥ 6 (in particular, G has at least 7
vertices). Let m be the number of edges and n be the number of vertices. By the handshake
lemma (a problem from HW4), 2m =

∑
v deg(v) ≥ 6n where the sum is over all vertices v.

In particular, m ≥ 3n, which contradicts Corollary 8.5 since n ≥ 7. �

You can’t improve the above statement to 4 because here is a planar graph where every
vertex has degree 5 (this is the projection of an icosahedron):

8.3. Obstructions to planarity. Recall that Kn is the complete graph on n vertices:
every pair of vertices has an edge between them. Also recall the complete bipartite graph
Kn,m. It has vertices {x1, . . . , xn, y1, . . . , ym} and the edges {xi, yj} for all i = 1, . . . , n and
j = 1, . . . ,m.

Here are two important examples of non-planar graphs:

Example 8.7. K5 has 5 vertices and 10 edges, so is not planar: if it were, then Corollary 8.5
implies 10 ≤ 3(5− 2) which is false. �

Example 8.8. K3,3 has 6 vertices and 9 edges. We claim it is not planar. However, if you
test the inequality in Corollary 8.5, you get 9 ≤ 3(6− 2) which is valid, so doesn’t help us.
We instead use the stronger Theorem 8.4. Since K3,3 is bipartite, it has no odd cycles, and
in particular, its girth is ≥ 4. Then the sharper inequality would be 9 ≤ 2(6 − 2) which is
false, and allows us to conclude K3,3 is not planar. �

Example 8.9. We’ve seen already that K4 is planar. In particular, so is Kn for n ≤ 4
(subgraphs of planar graphs are clearly planar). K3,2 is also planar (can you find a planar
drawing?). In fact, Kn,2 is planar for any n. �

39

Given a graph G and an edge e = {x, y}, the subdivision of G along e is a new graph
obtained as follows: add a new vertex z, and edges {x, z} and {y, z} and remove e (pictorially,
we’ve replaced e with two edges. Here’s an example where we’re subdividing the left edge:

Starting with any graph G, we can subdivide edges all we like (including the new ones), the
resulting set of graphs are called subdivisions of G.

It’s clear that if G isn’t planar, then neither is any subdivision of it (all we really did is
add vertices along edges). Furthermore, if G contains a subgraph which isn’t planar, then
G also can’t be planar.

Combining what we know, if G contains a subgraph which is isomorphic to a subdivision
of K5 or K3,3, then it isn’t planar. The converse is also true, but we won’t prove it:

Theorem 8.10 (Kuratowski, 1930). A simple graph G is planar if and only if it does not
have a subgraph which is isomorphic to a subdivision of K5 or K3,3.

There is a variant which is also convenient for testing planarity. Given a graph G and an
edge e, we can delete it to get G \ e or contract it to get G/e. We will call both of these
graph minors of G, and more generally, a graph minor of G is any graph which can be
obtained from G by repeatedly deleting edges and vertices, and also contracting edges.

If G is planar, then so is any graph minor (consider how these operations affect a planar
drawing). Equivalently, if G has a non-planar graph minor, then G is non-planar. So we
conclude that if G has a graph minor isomorphic to K5 or K3,3, then G is not planar. Again,
the converse is also true, but we won’t prove it:

Theorem 8.11 (Wagner, 1937). A simple graph G is planar if and only if it does not have
a graph minor which is isomorphic to K5 or K3,3.

In this way, we see that K5 and K3,3 are the basic obstructions to a graph being planar.

8.4. Chromatic numbers of planar graphs. The following result is a famous result in
graph theory which was first proven by Appel and Haken in 1976:

Theorem 8.12 (4-color theorem). Let G be a simple planar graph. Then χ(G) ≤ 4, i.e., G
has a proper 4-coloring.

The proof is very difficult so we won’t say much about it. The method of proof roughly
consisted of reducing the check to a finite (but very large) number of different cases and
have the result checked by a computer program. This is historically one of the early uses of
computer verification of proofs in math.

However, it turns out to be not that hard to prove weaker versions. Our goal will be to
prove the 5-color theorem. But first, let’s warm-up with the 6-color theorem.

Theorem 8.13. Let G be a simple planar graph. Then χ(G) ≤ 6.

Proof. We do induction on the number of vertices. If G has 1 vertex, there’s nothing to say.
Otherwise, assume that all simple planar graphs with < n vertices have a proper 6-coloring,
and let G be a simple planar graph with n vertices. By Corollary 8.6, there is a vertex
v of G with deg(v) ≤ 5. Let H be the graph obtained by deleting v and all of the edges

40

that touch it. By induction, H has a proper 6-coloring. The neighbors of v use at most
5 different colors, so we are free to use the 6th remaining one for v, and hence extend the
proper coloring to all of G. �

Now let’s do the 5-color theorem. We follow the same outline, but need to consider more
situations in the induction step.

Theorem 8.14. Let G be a simple planar graph. Then χ(G) ≤ 5.

Proof. Same as before: we do induction on the number of vertices of G. Let v be a vertex
of G with deg(v) ≤ 5, H = G \ {v} has a proper 5-coloring by induction. If the neighbors
don’t use all 5 colors, then we can use the same argument from before to finish. So we may
assume deg(v) = 5 and that all 5 neighbors of v must use different colors.

Let x1, . . . , x5 be the neighbors of v in clockwise order and let ci be the name of the color
of xi. For each i < j, let H(i, j) be the subgraph of H on all vertices that use colors ci or cj
(with all edges between them). If x1 and x3 are in different connected components of H(1, 3),
then swap the colors c1 and c3 of all vertices in the component containing x1. Then this gives
a new proper 5-coloring of H, and now the neighbors of v only use 4 different colors, so we
can assign c1 to v and finish. Otherwise, x1 and x3 are in the same connected component of
H(1, 3), which means there is a path from x1 to x3 consisting of vertices alternating between
c1 and c3:

v

x1

x2

x3x4

x5

But this means that x2 and x4 have to be in different connected components of H(2, 4) (the
red-blue path above separates them). So we can do the swapping we mentioned above to
reduce the number of colors used to 4. �

It’s tempting to keep pushing this argument to bring down the number of colors needed
to 4. Actually, something like this was done by Kempe in 1879. It turned out there was a
subtle mistake in Kempe’s argument which wasn’t found until 11 years later. I’ve posted an
article to the course webpage which explains the details of Kempe’s argument and why it
was wrong (this is purely optional further reading).

9. Ramsey theory

9.1. Pigeon-hole principle. The following is really obvious, but is a very important tool.
There are many interesting ways to use this theorem which are not obvious.

Theorem 9.1 (Pigeon-hole principle (PHP)). Let n, k be positive integers with n > k. If n
objects are placed into k boxes, then there is a box that has at least 2 objects in it.

Proof. We will do proof by contradiction. So suppose that the statement is false. Then each
box has either 0 or 1 object in it. Let m be the number of boxes that have 1 object in it.
Then there are m objects total and hence n = m. However m ≤ k since there are k boxes,
but this contradicts our assumption that n > k. �

41

Note that the objects can be anything and the boxes don’t literally have to be boxes.

Example 9.2. • Simple example: If we have 4 flagpoles and we put up 5 flags, then
there is some flagpole that has at least 2 flags on it.
• Draw 10 points in a square with unit side length. Then there is some pair of them

that are less than .48 distance apart. There’s some content here since the corners
on opposite ends have distance

√
2 ≈ 1.4. Also, if we only have 9 points, we could

arrange them like so:

The pairs of points that are closest are .5 away from each other, so it is important
that we have at least 10 points.

To see why the statement holds, divide the square into 9 equal parts:

Then some little square has to contain at least 2 points in it (is it ok if the points are
on the boundary segments?). Each square has side length 1/3, and so the maximum
distance between 2 points in the same square is given by the length of its diagonal
(why?) which is

√
(1/3)2 + (1/3)2 =

√
2/3 ≈ 0.4714. �

Here are some more to think about:

• At least 2 of the students in this class were born in the same month.
• If you have 10 white socks and 10 grey socks, and you grabbed 3 of them without

looking, you automatically have a matching pair.
• Pick 5 different integers between 1 and 8. Then there must be a pair of them that

add up to 9.
• Given 5 points on a sphere, there is a hemisphere that contains at least 4 of the

points.
• There is a party with 1000 people. Some pairs of people have a conversation at this

party. There must be at least 2 people who talked to the same number of people.
• Given an algorithm for compressing data, if there exist files whose length strictly

decreases, then there exist files whose length strictly increases!
In mathematical terms: let’s represent a file by a sequence of 0’s and 1’s. Then

an algorithm for compressing data can be thought of as a function that takes each
sequence to some other sequence in such a way that different inputs must result in
different outputs.

Here’s a more general version of the PHP:

42

Theorem 9.3 (General pigeon-hole principle). Let n,m, r be positive integers and suppose
that n > rm. If n objects are placed into m boxes, then there is a box that contains at least
r + 1 objects in it.

If you set r = 1, then this is exactly the first version of the PHP.

Proof. We can again do this via proof by contradiction. Suppose the statement is false and
label the boxes 1 up to m. Let bi be the number of objects in box number i. Then bi ≤ r since
the conclusion is false. Furthermore, we have n = b1 + b2 + · · ·+ bm ≤ r + r + · · ·+ r = rm.
But this contradicts the assumption that n > rm. �

Example 9.4. • Simple example: If we have 4 flagpoles and 9 flags distributed to
them, then some flagpole must have at least 3 flags on it.
• Continuing from our geometry example from before: draw 9 points in a square of

unit side length. Then there must be a triple of them that are contained in a single
semicircle of radius 0.5. (Is this true if we only have 8 points?)

For the solution, we divide up the square into 4 triangles as follows:

Then some triangle must contain at least 3 points. Furthermore, each triangle fits
into a semicircle of radius 0.5. �

9.2. Ramsey’s theorem for graphs. The general slogan of Ramsey theory is that “com-
plete disorder is impossible”. Here’s the basic example. There are n people in a room. Every
pair of people are either friends or enemies (there are no neutral options!) but otherwise
there’s no further information we are given (people with a common friend could be enemies,
for example).

Theorem 9.5. If n ≥ 6, then there exist 3 people who either are all friends with each other,
or are all enemies of each other.

Let’s translate this problem into graph theory so we can be more precise. Form a graph
whose vertices are the people. Draw a red edge between them if they are enemies, and a blue
edge otherwise. Alternatively, our setup is: we have a complete graph and we are assigning
red or blue to each edge. Then the theorem states that if n ≥ 6, we can find a monochromatic
triangle (all edges are the same color). We will use this interpretation below.

Proof. Pick a vertex v. Since n ≥ 6, v has at least 5 neighbors. Take 5 of them and consider
the colors on them. By generalized PHP, at least 3 of them have to be the same color.
Without loss of generality, we can assume this color is red. So there are 3 vertices x1, x2, x3
such that {v, x1}, {v, x2}, {v, x3} are all red. Now we have 2 cases:

Case 1. At least one of the edges {xi, xj} is red. Then {v, xi, xj} is a red triangle.
Case 2. None of the edges {xi, xj} are red. Then they are all blue. But then {x1, x2, x3}

is a blue triangle. �

What if n = 5? The following shows that there might not be monochromatic triangles:

43

There are a few ways to generalize this problem:

• Allow more colors.
• Replace 3 with a bigger number.

Let’s consider the second option. Here’s the general definition:

Definition 9.6. Let m,n ≥ 2 be integers. Define the Ramsey number R(m,n) to be the
smallest integer d such that, for any way to color the edges of Kd either red or blue, there
either exists a red copy of Km or a blue copy of Kn. �

A copy of Km in a graph is also called a clique of size m. So we’re trying to find
monochromatic cliques of a certain size (which could differ for the colors).

In our original problem, this means that there is either a group of m people who are all
pairwise enemies, or there is a group of n people who are all pairwise friends.

Our discussion above shows that R(3, 3) = 6 (the theorem shows R(3, 3) ≤ 6 and the
example shows that R(3, 3) ≥ 6). In general, finding an upper bound d ≥ R(m,n) means
we can show that any red-blue coloring of the edges of Kd have monochromatic cliques of a
certain size. A lower bound R(m,n) ≥ d means that we can find a red-blue coloring of Kd−1
which does not have a red clique of size m and does not have a blue clique of size n.

Here are some easy properties:

• R(m,n) = R(n,m)
• R(2, n) = n, R(m, 2) = m.

The next question is whether or not R(m,n) even exists: what if no coloring of a complete
graph of any size has the right monochromatic clique? The next theorem says this is not the
case:

Theorem 9.7. If m > 2 and n > 2, then R(m,n) ≤ R(m,n− 1) +R(m− 1, n).

Proof. Let d = R(m,n− 1) +R(m− 1, n). Consider a red-blue coloring of the edges of Kd.
Pick any vertex v. It has d− 1 neighbors. PHP gives us 2 cases:

Case 1. v has at least R(m,n−1) neighbors all of whose edges with v are blue. Consider
just the subgraph on these R(m,n − 1) neighbors. By definition, this subgraph either has
a red clique of size m (then we’re done) or it has a blue clique of size n − 1. In the second
case, throw in v to get a blue clique of size n in the original coloring.

Case 2. v does not have at least R(m,n− 1) neighbors whose edges with v are blue. In
that case, it has at least R(m − 1, n) neighbors all of whose edges with v are all red. The
reasoning is now the same as in Case 1. �

Using this, we can get an explicit upper bound:

Corollary 9.8. R(m,n) ≤
(
n+m−2
m−1

)
Proof. We do induction on the sum r = m+n. The base case is when r = 4, i.e., m = n = 2,
and then R(2, 2) = 2 and

(
2+2−2
2−1

)
= 2.

44

Otherwise assume we are given m,n such that m+ n = r and that the identity R(a, b) ≤(
a+b−2
a−1

)
is valid whenever a + b < r. If m = 2 then R(2, n) = n and

(
n+2−2

1

)
= n, so

we’re done. If n = 2, then the argument is similar. Otherwise, we have m > 2 and n > 2
and we can use the theorem. Our induction hypothesis says R(m,n − 1) ≤

(
n+m−3
m−1

)
and

R(m− 1, n) ≤
(
n+m−3
m−2

)
. Combining this with the theorem and Pascal’s identity, we get

R(m,n) ≤ R(m,n− 1) +R(m− 1, n) ≤
(
n+m− 3

m− 1

)
+

(
n+m− 3

m− 2

)
=

(
n+m− 2

m− 1

)
. �

In general these bounds are not equalities though. We can do a couple more cases.

Example 9.9. The theorem above gives R(4, 3) ≤ 10 because

R(4, 3) ≤ R(4, 2) +R(3, 3) = 4 + 6 = 10.

However, as we will prove now, R(4, 3) = 9, so this bound isn’t optimal. �

Theorem 9.10. R(4, 3) ≤ 9.

Proof. Color the edges of K9 red and blue however you like, and I’ll show that either there
is a red clique of size 4 or a blue triangle.

First, I claim that there is some vertex with either ≥ 6 red edges or ≤ 4 red edges touching
it. If not, then every vertex has exactly 5 red edges touching it. Let G be the graph on the
9 vertices with just the red edges. The sum of the degrees is always twice the number of
edges, but the sum here would be 45, which is not possible. So the claim is proven and we
consider these two cases.

Case 1. There is a vertex v with ≥ 6 red edges. Let x1, . . . , x6 be vertices such that
{v, xi} are all red. Consider the subgraph on {x1, . . . , x6}. Since R(3, 3) = 6, we know that
there is either a blue triangle on the xi (in which case we’re done) or a red triangle on the
xi. In the second case, take that red triangle and add v to get a red clique of size 4.

Case 2. There is a vertex v with ≤ 4 red edges. In particular, since v has 8 neighbors,
it has ≥ 4 blue edges. Let y1, . . . , y4 be vertices such that {v, yi} are all blue. If any of the
edges between the yi are blue, then we have a blue triangle (add v). Otherwise, all of the
edges between the yi are red, in which case {y1, . . . , y4} is a red clique of size 4. �

To see why R(4, 3) ≥ 9, we give an example below of a red-blue coloring of the edges of
K8 (I drew them separately to make it easier to read):

Here’s one last calculation:

Theorem 9.11. R(4, 4) = 18

Proof. The inequality from before shows

R(4, 4) ≤ R(4, 3) +R(3, 4) = 9 + 9 = 18.

Next, here’s a red-blue coloring of the edges of K17 with no monochromatic cliques of size 4:

45

�

Remark 9.12. You could stare at that for a while and maybe believe there are no monochro-
matic cliques of size 4, but let me instead tell you where it comes from. Label the vertices
0, 1, . . . , 16, which we think of as all possible remainders modulo 17. We color an edge {i, j}
red if x2 = i−j (mod 17) has a solution in x (only possible if i−j ∈ {1, 2, 4, 8, 9, 13, 15, 16}),
and color it blue otherwise.

A hypothetical blue clique of size 4 would be 4 numbers a < b < c < d such that all
differences are squares modulo 17. Set A1 = b− a, A2 = c− b, A3 = d− c. Then we have 3
numbers A1, A2, A3 (possibly with overlaps) such that A1, A2, A3, A1+A2, A2+A3, A1+A2+
A3 ∈ {1, 2, 4, 8, 9, 13, 15, 16} (addition taken modulo 17). Such numbers don’t exist (ruled
out by case analysis). A similar case analysis can be used to show that red cliques of size 4
don’t exist. �

As the example above shows, the determination of the Ramsey numbers R(m,n) becomes
difficult very quickly. The next values are R(3, 5) = 14 and R(4, 5) = 25. But already R(5, 5)
is unknown! The brute force method is unfeasible in general: there are

(
n
2

)
edges of Kn and

hence 2(n
2) red-blue colorings to analyze (of course many are the same up to automorphisms,

but still the search space is large). For example, when n = 10, 2(10
2) = 245 = 35184372088832.

How about introducing more colors? The definition is straightforward to generalize:

Definition 9.13. Let n1, . . . , nr ≥ 2 be integers, and let c1, . . . , cr be different colors. Define
the Ramsey number R(n1, . . . , nr) to be the smallest integer d such that, for any way to
color the edges of Kd using the colors c1, . . . , cr, there is, for some i, a clique of color ci of
size ni. �

Going back to our original example, if r = 3, we could introduce a new color green which
represented that two people were neutral, i.e., not enemies or friends. Some easy properties:

• Ramsey numbers are symmetric in the inputs, i.e., swapping the order of the ni

results in the same value.
• If any of the values are 2, then we can remove them the number is unchanged. For

example, R(2, n2, . . . , nr) = R(n2, . . . , nr).

Here is a generalization of the inequality from before (the proof is similar so we won’t spell
it out):

Theorem 9.14. Assume all ni ≥ 3. Then

R(n1, . . . , nr) ≤ R(n1−1, n2, . . . , nr)+R(n1, n2−1, . . . , nr)+· · ·+R(n1, n2, . . . , nr−1)−(r−2).

46

(In the right side, we subtract 1 from each input in all possible ways and add the results.)

Example 9.15. We have

R(3, 3, 3) ≤ R(2, 3, 3) +R(3, 2, 3) +R(3, 3, 2)− 1.

By our easy property, we can always drop 2’s, so each term on the right is R(3, 3) = 6. We
conclude that R(3, 3, 3) ≤ 17. In fact, R(3, 3, 3) = 17: it is possible to color the edges of
K16 with red, blue, green so that there are no monochromatic triangles (the construction is
based on finite fields, but is complicated so I won’t detail it). �

We can also use it to give explicit upper bounds using multinomial coefficients:

Corollary 9.16.

R(n1, . . . , nr) ≤
(
n1 + · · ·+ nr − r
n1 − 1, . . . , nr − 1

)
.

9.3. Lower bounds on Ramsey numbers. In the previous section we obtained some
upper bounds on Ramsey numbers. We got some lower bounds by constructing specific
examples, but what can be said in general? The next theorem illustrates how we can use
random examples to get lower bounds. The idea here is that constructing an example with
specific properties is often hard, but randomly assigning red or blue to edges may do the
trick. We first need a preliminary inequality.

Lemma 9.17. If n ≥ 3, then 2 · 2n/2

n!
< 1.

Proof. Induction on n. If n = 3, then the left side is 2
√
2

3
. Its square is 8/9 which is < 1, so

the inequality holds.

Now assume that 2 · 2n/2

n!
< 1. We want to show the same is true for n + 1. Since n ≥ 3,

we have n+ 1 >
√

2, and so
√
2

n+1
< 1. Multiply the given inequality by

√
2

n+1
to get

2 · 2(n+1)/2

(n+ 1)!
<

√
2

n+ 1
< 1. �

Theorem 9.18. For any n ≥ 3, we have R(n, n) ≥ 2n/2.

Proof. Let d be the smallest integer ≤ 2n/2. Consider the following random procedure: for
each edge of Kd, flip a coin and color it red if you get heads and blue if you get tails. I
claim that the probability p that the result has a monochromatic clique of size n is positive.

What does that mean? There are finitely many possible outcomes (2(d
2) to be precise), so if

the probability is p > 0, then there are exactly p2(d
2) many colorings with no monochromatic

clique of size n. In particular, there’s at least 1, which is enough.
It will be easier to show that 1− p < 1 (but it means the same), so we’ll do that instead.

Here 1− p is the probability that we have at least one monochromatic clique of size n. Let
S be a subset of n vertices out of the d total. The probability that these vertices form a

monochromatic clique is 2/2(n
2). While the event that two subsets are monochromatic are in

general not independent of each other (for example they might overlap), the probability of
at least one being monochromatic is bounded from above by their sum. Since there are

(
d
n

)
subsets total, we see that the probability that there is at least one monochromatic clique of
size n is

1− p ≤
(
d

n

)
2

2(n
2)

=
d(d− 1) · · · (d− n+ 1)

n!

2

2(n
2)
<
dn

n!

2

2(n
2)
.

47

Since d ≤ 2n/2, we have dn ≤ 2n2/2, so we can continue:

1− p < 2n2/2

n!

2

2(n
2)

= 2 · 2n/2

n!
< 1

where the last inequality is the previous lemma. �

In the previous section, we proved that R(n, n) ≤
(
2n−2
n−1

)
. For example, when n = 4, we

get the inequalities:
4 ≤ R(4, 4) ≤ 20.

They’re far off, so it’s a little unsatisfying (we know the real value is 18). For n = 5, our
inequality gives (

√
2)5 as a lower bound, but it rounds up to 6:

6 ≤ R(5, 5) ≤ 70.

Again, the range is pretty wide. We can improve the upper bound to 50 since R(4, 5) = 25
(we didn’t prove that). In fact, the best known inequalities so far are

43 ≤ R(5, 5) ≤ 48,

but again, the exact value is not known.

	1. Induction
	1.1. Weak induction
	1.2. Strong induction

	2. Elementary counting problems
	2.1. Bijections
	2.2. Sum and product principle
	2.3. Permutations and combinations
	2.4. Words
	2.5. Choice problems

	3. Binomial theorem and generalizations
	3.1. Binomial theorem
	3.2. Multinomial theorem

	4. Inclusion-exclusion
	5. Graph theory, introduction
	5.1. Eulerian trails
	5.2. Directed graphs
	5.3. Hamiltonian cycles
	5.4. Graph isomorphisms

	6. Trees
	6.1. Definition and basic properties
	6.2. Adjacency matrix
	6.3. Deletion-contraction
	6.4. Matrix-tree theorem
	6.5. Minimum-weight spanning trees

	7. Coloring and matching
	7.1. Colorings and chromatic polynomials
	7.2. Bipartite graphs
	7.3. Matchings
	7.4. Stable matchings

	8. Planarity
	8.1. Definitions
	8.2. Some equations and inequalities
	8.3. Obstructions to planarity
	8.4. Chromatic numbers of planar graphs

	9. Ramsey theory
	9.1. Pigeon-hole principle
	9.2. Ramsey's theorem for graphs
	9.3. Lower bounds on Ramsey numbers

