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7. Group actions 57
7.1. Terminology 57
7.2. Burnside’s lemma 59
7.3. Redfield–Pólya theory 61
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1. Linear recurrence relations

1.1. Setup. A sequence of numbers (an)n≥0 is said to satisfy a (homogeneous) linear
recurrence relation of order d if there are scalars c1, . . . , cd such that cd 6= 0, and for all
n ≥ d, we have

an = c1an−1 + c2an−2 + · · ·+ cdan−d.

Example 1.1. The Fibonacci numbers fn are given by the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . .
This isn’t really telling you what the general fn is, so instead let me say that for all n ≥ 2,
we have

fn = fn−1 + fn−2.

Together with the initial conditions f0 = 0, f1 = 1, this is enough information to calculate
any fn. So (by definition), the Fibonacci numbers satisfy a linear recurrence relation of order
2. �

In general, if we want to define a sequence using a linear recurrence relation of order d,
we need to specify the first d initial values a0, a1, . . . , ad−1 to allow us to calculate all of the
terms.

Our goal here is to get closed formulas for sequences that satisfy linear recurrence relations.

Example 1.2. When d = 1, this is easy to do:

an = c1an−1 = c2
1an−2 = c3

1an−3 = · · · = cn1a0. �

So now we’ll focus on the case d = 2. So we have a sequence of numbers a0, a1, a2, . . . that
satisfies a recurrence relation of the form

an = c1an−1 + c2an−2

whenever n ≥ 2 (here c1, c2 are some constants and c2 6= 0). We want to find a closed formula
for an.

The characteristic polynomial of this recurrence relation is defined to be

t2 − c1t− c2.

The roots of this polynomial are
c1 ±

√
c2

1 + 4c2

2
. Call them r1 and r2.1 So we can factor

the characteristic polynomial as

t2 − c1t− c2 = (t− r1)(t− r2).(1.3)

Comparing constant terms, we get r1r2 = −c2, so r1 6= 0 and r2 6= 0 because we assumed
that c2 6= 0.

Here is the first statement:

Theorem 1.4. If r1 6= r2, then there are constants α1 and α2 such that

an = α1r
n
1 + α2r

n
2

for all n ≥ 0.

1We haven’t said what kind of numbers we’re dealing with here; for simplicity, you may assume they are
complex numbers, but they can be taken from any field, even finite fields Z/p, though the quadratic formula
makes no sense for Z/2 of course.
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To solve for the coefficients, plug in n = 0 and n = 1 to get

a0 = α1 + α2

a1 = r1α1 + r2α2.

Then you have to solve for α1, α2 (a0, a1 are part of the original sequence, so are given to
you).

Example 1.5. Let’s finish with the example of the Fibonacci numbers fn. These are defined
by

f0 = 0

f1 = 1

fn = fn−1 + fn−2 for n ≥ 2.

So the characteristic polynomial is t2− t− 1. Its roots are
1±
√

5

2
. Set r1 = (1 +

√
5)/2 and

r2 = (1−
√

5)/2. So we have

fn = α1r
n
1 + α2r

n
2

and we have to solve for α1 and α2. Plug in n = 0, 1 to get:

0 = α1 + α2

1 = α1r1 + α2r2.

So α1 = −α2; plug this into the second formula to get 1 = α1(r1−r2) = α1

√
5. So α1 = 1/

√
5

and α2 = −1/
√

5. In conclusion:

fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

. �

Example 1.6. Consider a periodic sequence x, y, x, y, . . . (starting at a0). This satisfies the
linear recurrence relation an = an−2 for n ≥ 2 so the characteristic polynomial is t2 − 1 =
(t − 1)(t + 1). Hence we have an = α1 + α2(−1)n for α1, α2 that satisfy α1 + α2 = x and
α1 − α2 = y, i.e., α1 = (x+ y)/2 and α2 = (x− y)/2. �

Remark 1.7. Here is another way to think about the theorem. Pick scalars c1, c2 such that
t2 − c1t − c2 has distinct roots. If (an) is a solution, i.e., an = c1an−1 + c2an−2 and (a′n) is
also a solution, then so is any linear combination (γan + δa′n). In other words, the set of
solutions to a linear recurrence relation forms a vector space. The theorem then says that
(rn1 ) and (rn2 ) span this vector space.

Checking that they are solutions is straightforward:

rn1 − c1r
n−1
1 − c2r

n−2
1 = rn−2

1 (r2
1 − c1r1 − c2) = 0.

In fact, since r1 6= r2, it is clear that the sequences (rn1 ) and (rn2 ) are linearly independent,
so in fact they form a basis. This tells us that the solution space is 2-dimensional. This
last fact isn’t too hard to guess: in finding a solution, we can arbitrarily specify the first
two terms and everything is uniquely determined. Moreover, this 2-dimensionality still holds
when r1 = r2, so we’ll need to find a solution that’s not a multiple of rn1 . �
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The above remark gives a proof of Theorem 1.4 once a few details are filled in, but
it required knowing in advance what the answer should be. Let’s now discuss two other
derivations of Theorem 1.4 which are a bit more general (i.e., work on other problems) and
don’t require knowing the answer first.

1.2. Proofs of Theorem 1.4. We will give two proofs of Theorem 1.4: using formal power
series and matrices.

1.2.1. Using formal power series. We will develop formal power series more carefully in §2.
For now we will sacrifice rigor to motivate why they are useful.

Define the infinite sum (x is a variable)

A(x) =
∑
n≥0

anx
n.

We call this the generating function of (an). The recurrence relation says that we have
an identity

A(x) = a0 + a1x+
∑
n≥2

(c1an−1 + c2an−2)xn

= a0 + a1x+ c1

∑
n≥2

an−1x
n + c2

∑
n≥2

an−2x
n.

Remember the recurrence is only valid for n ≥ 2, so we have to separate out the first two
terms. Now comes an important point: the last two sums are almost the same as A(x) if we
re-index them: ∑

n≥2

an−1x
n =

∑
n≥1

anx
n+1 = x

∑
n≥1

anx
n = x(A(x)− a0)∑

n≥2

an−2x
n =

∑
n≥0

anx
n+2 = x2A(x).

In particular,
A(x) = a0 + a1x+ c1xA(x)− c1a0x+ c2x

2A(x).

We can rewrite this as

A(x) =
a0 + (a1 − c1a0)x

1− c1x− c2x2
.(1.8)

We want to factor the denominator. To do this, plug in t 7→ x−1 into (1.3) and multiply by
x2 to get

1− c1x− c2x
2 = (1− r1x)(1− r2x).

Now we can apply partial fraction decomposition to (1.8) to write

A(x) =
α1

1− r1x
+

α2

1− r2x

for some constants α1, α2. But these terms are both geometric series, so we can further write

A(x) = α1

∑
n≥0

rn1x
n + α2

∑
n≥0

rn2x
n.

The coefficient of xn on the left side is an and the coefficient of xn on the right side is
α1r

n
1 + α2r

n
2 . So we have equality for all n.
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1.2.2. Using matrices. Our recurrence relation translates to the following matrix equation:[
c1 c2

1 0

] [
an−1

an−2

]
=

[
an
an−1

]
for n ≥ 2. Set C =

[
c1 c2

1 0

]
. Then our goal is to find a formula for Cn

[
a1

a0

]
for all n ≥ 0

because the second entry is an. Thinking back to linear algebra, we can do this if we can
diagonalize C: if C = BDB−1 for some diagonal matrix D, then we have Cn = BDnB−1

and Dn is easy to compute. The characteristic polynomial of C is conveniently t2− c1t− c2,
which is the characteristic polynomial of the recurrence relation, so its eigenvalues are r1, r2.
Since we are assuming they are distinct, C is diagonalizable, so there is some matrix B such

that C = B

[
r1 0
0 r2

]
B−1.

Let’s just name

[
x
y

]
= B−1

[
a1

a0

]
. We don’t need to compute x, y but note that they are

constants of our recurrence relation (they do not depend on n). Then[
an+1

an

]
= Cn

[
a1

a0

]
= B

[
rn1 0
0 rn2

] [
x
y

]
=

[
b1,1xr

n
1 + b1,2yr

n
2

b2,1xr
n
1 + b2,2yr

n
2

]
.

To finish the proof we just set α1 = b2,1x and α2 = b2,2y.

1.3. Generalizations. Some questions we haven’t answered yet:

• What if r1 = r2?
• What about higher degree recurrence relations?
• What about non-homogeneous recurrence relations?
• What about non-linear recurrence relations?

We can answer the first two without much additional effort, but the last two are much
wider open and don’t have obvious answers (we’ll address some instances throughout the
course). There is a good analogy here with systems of differential equations—as you learn
in Math 20D, the linear homogeneous case is formulaic to solve, but in general they are a
mess.

1.3.1. Repeated roots.

Theorem 1.9. If r1 = r2, then there are constants α1 and α2 such that

an = α1r
n
1 + α2nr

n
1

for all n ≥ 0.

Again, to solve for α1, α2, just plug in n = 0, 1 to get a system of equations:

a0 = α1

a1 = α1r1 + α2r1.

(From this we could solve the general case, but I think it’s easier to remember the way I’ve
written it.)

Example 1.10. Suppose (an)n≥0 satisfies the recurrence relation

an = 4an−1 − 4an−2 (n ≥ 2)
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with initial conditions a0 = a1 = 1. The characteristic polynomial is t2 − 4t + 4 = (t− 2)2.
So we have constants α1, α2 such that an = (α1 + α2n)2n. Plug in n = 0 to get 1 = α1 and
plug in n = 1 to get 1 = 2(α1 + α2), which means that α2 = −1/2. So we get the formula

an = (1− n

2
)2n = −2n−1(n− 2). �

Proof. We can start in the same way as in the previous proof. The only difference is that we
are trying to take the partial fraction decomposition of

A(x) =
a0 + (a1 − c1a0)x

(1− r1x)2
.

This can still be done, but now it looks like

β1

1− r1x
+

β2

(1− r1x)2

for some constants β1, β2. The first is a geometric series, and the second is obtained from
taking a derivative of the geometric series: 1/(1− x)2 =

∑
n≥0(n+ 1)xn. So we get instead

A(x) = β1

∑
n≥0

rn1x
n + β2

∑
n≥0

(n+ 1)rn1x
n.

Comparing coefficients, we get

an = β1r
n
1 + β2(n+ 1)rn1 = (β1 + β2)rn1 + β2nr

n
1 .

So α1 = β1 + β2 and α2 = β2. �

How does the matrix proof adapt? The matrix

C =

[
c1 c2

1 0

]
now has a repeated eigenvalue r. It cannot be diagonalizable: if it were, then it must be r

times the identity since we would have C = B

[
r 0
0 r

]
B−1 =

[
r 0
0 r

]
. However, all matrices

have something called a Jordan normal form. For non-diagonalizable 2 × 2 matrices, this
means there is an invertible 2× 2 matrix B so that

C = B

[
r 1
0 r

]
B−1.

Remark 1.11. Why is this possible? We know that there is an eigenvector v for C with
eigenvalue r. Let w be any vector which is not a multiple of v. Then Cw = av + bw for

some scalars, and the matrix for C with respect to the basis is

[
r a
0 b

]
. But detC = r2, so

we see that b = r. Next, a 6= 0 since otherwise C would be r times the identity matrix. If
w′ = w/a, then Cw′ = rw′ + v, so that with respect to the basis {v, w′}, the matrix for C is

now

[
r 1
0 r

]
. So we can take B to be the matrix whose columns are v and w′. (The existence

of Jordan normal form for larger matrices requires a lot more effort.) �
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Note then that C = B

[
r 1
0 r

]n
B−1 and that

[
r 1
0 r

]n
=

[
rn nrn−1

0 rn

]
. Now we finish in

the same way as before. Set

[
x
y

]
= B−1

[
a1

a0

]
. Then we have[

an+1

an

]
= Cn

[
a1

a0

]
= B

[
rn nrn−1

0 rn

] [
x
y

]
= B

[
xrn + ynrn−1

yrn

]
.

It gets a little messy to expand fully, but the point is that the second component is both an
and also a linear combination of rn and nrn−1 (to match the theorem, we can always adjust
the coefficient of nrn−1 by r to make it nrn).

1.3.2. Higher order relations. Higher order recurrence relations

an = c1an−1 + · · ·+ cdan−d

can be solved in the same way: one has to first find the roots of the characteristic polynomial
td− c1t

d−1− c2t
d−2−· · ·− cd and apply partial fraction decomposition as in the proof above.

The simplest case is when the roots r1, . . . , rd are all distinct. In this case, we can say that
there exist constants α1, . . . , αd such that

an = α1r
n
1 + · · ·+ αdr

n
d

for all n. In order to solve for α1, . . . , αd, we have to consider n = 0, . . . , d− 1 separately to
get a system of d linear equations in d variables. When the roots appear with multiplicities,
we have to do something like we did in Theorem 1.9. For example, if d = 5 and the roots
are r1 with multiplicity 3 and r2 with multiplicity 2 (and r1 6= r2), then we would have

an = α1r
n
1 + α2nr

n
1 + α3n

2rn1 + α4r
n
2 + α5nr

n
2 .

This should look familiar to you if you’ve ever solved a linear homogeneous differential
equation with constant coefficients.

I’ll leave it to you to formulate the general case, but I’ll focus on a really important case
when all roots equal 1.

Example 1.12. If the characteristic polynomial is (t − 1)d, then the pattern tells us that
there are constants α1, . . . , αd such that

an = α1 + α2n+ · · ·+ αdn
d−1,

i.e., that the sequence (an)n≥0 is given by a polynomial. �

Here’s a different perspective. Let T be the translation operation on sequences that shifts
down by 1, i.e., (Ta)n = an+1. This is a linear operator on the vector space of all sequences.
A recurrence relation

an = c1an−1 + · · ·+ cdan−d

can be rewritten as a single equation T da = c1T
d−1a + · · · + cda. If r1, . . . , rd are the roots

of the characteristic polynomial, then we can factor this as

(T − r1) · · · (T − rd)a = 0.

Going back to previous discussion, the solution space to the recurrence relation is the same
thing as the null space of the linear operator (T − r1) · · · (T − rd). The previous example
then translates to:
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Proposition 1.13. Given a sequence (an)n≥0, there is a polynomial p(n) of degree ≤ d− 1
such that an = p(n) if and only if (T − 1)da = 0.

Proof. We’ve basically seen one direction already: if (T − 1)da = 0, then an is given by
a polynomial of degree ≤ d − 1. Let’s consider the converse statement. Suppose p(n) =
pd−1n

d−1 + · · · + p1n + p0 is a polynomial of degree ≤ d − 1. Then (T − 1) applied to the
sequence (p(n)) is (p(n+ 1)−p(n)) and p(n+ 1) again has degree ≤ d−1 and the coefficient
of nd−1 is again pd−1, so the difference has degree ≤ d − 2. So by induction, we see that
(T − 1)dp = 0 (the base case d = 1 is when we have a degree 0 polynomial, which means it
is constant). �

Remark 1.14. The operation T − 1 can be interpreted as a discrete analogue of the deriv-
ative. The discrete analogue of integration S should be defined as (Sa)n = a0 + · · · + an−1.
Then we see that (T − 1)S is the identity and S(T − 1) is the identity up to a constant,
which are discrete versions of the fundamental theorem of calculus.

For more information, look up finite difference calculus. �

1.3.3. Non-homogeneous recurrence relations.

Example 1.15. Consider a non-homogeneous linear recurrence relation of degree 1:

an = can−1 + d

where c, d are constants. We can iterate the recursion to guess a formula:

an = c(can−2 + d) + d = c2an−2 + (c+ 1)d

= c3an−3 + (c2 + c+ 1)d

= · · ·
= cna0 + (cn + · · ·+ c+ 1)d.

If c = 1, this simplifies to an = a0 + nd and otherwise we can write an = cna0 + 1−cn
1−c d.

Here’s a different way to approach it. If we take the difference of an = can−1 + d and
an−1 = can−2 + d, we get the relation an = (c+ 1)an−1 − can−2 for n ≥ 2. The characteristic
polynomial is t2−(c+1)t+c = (t−1)(t−c), so if c 6= 1, we must have coefficients α1, α2 such
that an = α1c

n + α2. If c = 1, then we have coefficients β1, β2 such that an = β1 + β2n. �

The approach just outlined can be generalized to show that solving a non-homogeneous
linear recurrence relation of degree d with constant offset reduces to solving a homogeneous
linear recurrence relation of degree d+1. We can iterate this idea to solve a non-homogeneous
linear recurrence relation with polynomial offset. I’ll just illustrate the linear case and leave
you to think about what happens for general polynomials. Of course, we still have the
question of what to do for general offsets.

Example 1.16. Consider a non-homogeneous linear recurrence relation of degree 1 with
linear offset:

an = can−1 + d1n+ d2.

We try the trick from before: if n ≥ 2, then subtract from this the equation an−1 = can−2 +
d1(n− 1) + d2 to get

an = (c+ 1)an−1 − can−2 + d1.

Now we do the difference trick again to this new equation to get:

an = (c+ 2)an−1 − (2c+ 1)an−2 + can−3



NOTES FOR MATH 188 9

which is homogeneous with characteristic polynomial t3−(c+2)t2+(2c+1)t−c = (t−c)(t−1)2.
So if c 6= 1, then our general solution is an = α1c

n + α2n + α3 and otherwise if c = 1 it is
an = α1n

2 + α2n+ α3. �

2. Formal power series

2.1. Definitions. A formal power series (in the variable x) is an expression of the form
A(x) =

∑∞
n=0 anx

n where the an are scalars (almost exclusively rational numbers in this
class)2. Instead of writing the sum from 0 to∞, we will usually just write A(x) =

∑
n≥0 anx

n.
If A(x) is a formal power series, let [xn]A(x) denote the coefficient of xn in A(x), so in this
case, [xn]A(x) = an.

The formal power series A(x) is sometimes called the generating function of the se-
quence (an). It doesn’t mean anything special since every formal power series is a generating
function, but it’s commonly used language, so we’ll use it too sometimes.

Let B(x) =
∑

n≥0 bnx
n be another formal power series.

By definition, two formal power series are equal if and only if all of their coefficients match
up, i.e., A(x) = B(x) if and only if an = bn for all n. We can treat these like infinite degree
polynomials.

The sum of two formal power series is defined by

A(x) +B(x) =
∑
n≥0

(an + bn)xn.

The product is defined by

A(x)B(x) =
∑
n≥0

cnx
n, cn =

n∑
i=0

aibn−i.

This is what you get if you just distribute like normal. As a special case, if ai = 0 for i > 0,
we just get

a0B(x) =
∑
n≥0

a0bnx
n.

Polynomials are special cases of formal power series: they are the ones with only finitely
many nonzero coefficients. All of the above definitions are compatible with operations on
polynomials as you know them.

Addition and multiplication are commutative, soA(x)+B(x) = B(x)+A(x) andA(x)B(x) =
B(x)A(x). They are also associative, so it is unambiguous how to add or multiply 3 or more
power series.

Example 2.1. Let A(x) = B(x) =
∑

n≥0 x
n. Then

A(x) +B(x) =
∑
n≥0

2xn,

A(x)B(x) =
∑
n≥0

(n+ 1)xn. �

2You could use any field with basically no changes below, and in fact you could even use a commutative
ring with some appropriate adjustments to the results below.
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A formal power series A(x) is invertible if there is a power series B(x) such that
A(x)B(x) = 1. In that case, we write B(x) = A(x)−1 = 1/A(x) and call it the inverse
of A(x). If it exists, then B(x) is unique.

Example 2.2. Let A(x) =
∑

n≥0 x
n and B(x) = 1− x. Then A(x)B(x) = 1, so B(x) is the

inverse of A(x). For that reason, we will use the expression

1

1− x
=
∑
n≥0

xn.

This is usually referred to as a geometric series.
On the other hand, the formal power series x is not invertible: the constant term of xB(x)

is 0 no matter what B(x) is, so there is no way that an inverse exists. �

Theorem 2.3. A formal power series A(x) is invertible if and only if its constant term is
nonzero.

Proof. Write A(x) =
∑

n≥0 anx
n. We want to solve A(x)B(x) = 1 if possible. If we multiply

the left side out and equate coefficients, we get the following (infinite) system of equations:

a0b0 = 1

a0b1 + a1b0 = 0

a0b2 + a1b1 + a2b0 = 0

a0b3 + a1b2 + a2b1 + a3b0 = 0

...

If a0 = 0, then there is no solution to the first equation so A(x) is not invertible.
If a0 6= 0, then we can solve the equations one by one. Formally, we can prove by induction

on n that there exist coefficients b0, . . . , bn that make the first n+ 1 equations valid. For the
base case n = 0, we have b0 = 1/a0. So suppose we have found the coefficients b0, . . . , bn
already. At the next step, we will have

bn = − 1

a0

n∑
i=1

aibn−i.

In the sum, we have i > 0, so bn−i is a coefficient we already solved for in a previous step.
Hence we get a formula for bn that makes the next equation valid as well. �

The proof might look unsatisfactory: how can we solve an infinite system of equations
simultaneously? For this, it is convenient to introduce the notion of convergence of formal
power series. Let A0(x), A1(x), . . . be a sequence of formal power series. We say that the
sequence converges to a formal power series A(x) if, for all n ≥ 0, the sequence ([xn]Ai(x))i
is equal to [xn]A(x) for i � 0 (i.e., there exists Nn such that if i ≥ Nn, then [xn]Ai(x) =
[xn]A(x); note that Nn is allowed to depend on n). In that case, we write

lim
i→∞

Ai(x) = A(x).

This is a sort of simple-minded way to define convergence: it just says that the nth coefficient
of the sequence is eventually constant for all n. It is very important to separate this from
the definition of convergence that you learn in calculus.
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Example 2.4. The sequence Ai(x) =
∑i

n=0 x
n converges to

∑
n≥0 x

n: for each n the se-
quence [xn]Ai(x) is n 0’s followed by a constant sequence of 1’s.

The sequence Ai(x) = xi converges to 0: for each n the sequence [xn]Ai(x) is a constant
sequence of 0’s with a single 1 in the nth position.

On the other hand, the sequence Ai(x) = 1/(i + 1) does not converge in our sense: the
sequence [x0]Ai(x) is not eventually constant. �

The proof of the following is left for homework.

Lemma 2.5. Assume that lim
i→∞

Ai(x) = A(x) and lim
i→∞

Bi(x) = B(x). Then

lim
i→∞

(Ai(x) +Bi(x)) = A(x) +B(x), lim
i→∞

(Ai(x)Bi(x)) = A(x)B(x).

In the proof above, by solving for the coefficients bn one at a time, we are essentially
considering the sequence of formal power series Bi(x) =

∑i
n=0 bnx

n and defining B(x) =
limi→∞Bi(x). This makes sense by the above since we’re showing that

1 = lim
i→∞

(A(x)Bi(x)) = A(x)B(x).

We can also define infinite sums and products. If Ai(x) is a sequence of formal power
series, then the sum

∑
i≥0Ai(x), is defined to be the limit of the finite partial sums if it

exists, i.e., ∑
i≥0

Ai(x) = lim
i→∞

i∑
j=0

Aj(x).

Similarly for infinite products: ∏
i≥0

Ai(x) = lim
i→∞

i∏
j=0

Aj(x).

Since these are just special cases of limits, Lemma 2.5 applies to give the following state-
ment.

Lemma 2.6. Assuming the relevant limits exist, we have∑
i≥0

Ai(x) +
∑
i≥0

Bi(x) =
∑
i≥0

(Ai(x) +Bi(x))(∏
i≥0

Ai(x)

)(∏
i≥0

Bi(x)

)
=
∏
i≥0

(Ai(x)Bi(x)).

Convergence won’t usually be a problem for us, so we won’t be too picky about the details
whenever it comes up. But do keep in mind that to be completely rigorous we always use
these definitions.

We can characterize when infinite sums or products exist as follows. Given a formal
power series A(x), define its minimum degree, mdeg(A(x)), to be the smallest n such that
[xn]A(x) 6= 0.

Proposition 2.7. Let A0(x), A1(x), . . . be a sequence of formal power series.

(1)
∑
i≥0

Ai(x) exists if and only if lim
i→∞

mdeg(Ai(x)) =∞.
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(2) Now assume that each Ai(x) has no constant term. Then
∏
i≥0

(1 +Ai(x)) exists if and

only if lim
i→∞

mdeg(Ai(x)) =∞.

We’ll omit the proof, but you can find them in Sagan’s book in §3.3.
Given two formal power series A(x) and B(x), suppose that A(x) has no constant term.

Then we can define the composition by

(B ◦ A)(x) = B(A(x)) =
∑
n≥0

bnA(x)n.

This is well-defined by the previous result: mdeg(bnA(x)n) ≥ n because A(x) has no
constant term.

An important special case is when A(x) = 0 is the 0 power series. In that case, B(0) = b0

is the constant term of B(x).

Example 2.8. Let d be a positive integer, A(x) = xd and B(x) =
∑

n≥0 x
n. Then B(A(x)) =∑

n≥0 x
dn. We can do this substitution into the identity

(1− x)B(x) = 1

to get

(1− xd)
∑
n≥0

xdn = 1,

from which we conclude that
1

1− xd
=
∑
n≥0

xdn. �

We can also take the (formal) derivative D of a formal power series. We denote it by
either DA or A′ and deifned it as follows:

(DA)(x) = A′(x) =
∑
n≥0

nanx
n−1 =

∑
n≥0

(n+ 1)an+1x
n.

All of the familiar properties of derivatives hold (again we’ll skip the proof):

D(A+B) = DA+DB

D(A ·B) = (DA) ·B + A · (DB)

D(B ◦ A) = (DA) · (DB ◦ A)

D(1/A) = −D(A)

A2

D(An) = nD(A)An−1.

Example 2.9. We have 1
1−x =

∑
n≥0 x

n. Taking the derivative of the left side gives 1
(1−x)2

.

Taking the derivative of the right side gives
∑

n≥0 nx
n−1 =

∑
n≥0(n + 1)xn. We’ve already

seen that these two expressions are equal.
How would we simplify B(x) =

∑
n≥0 nx

n? We have a few options. First:

B(x) =
∑
n≥0

(n+ 1)xn −
∑
n≥0

xn =
1

(1− x)2
− 1

1− x
=

1− (1− x)

(1− x)2
=

x

(1− x)2
.
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Or more directly:

B(x) = x
∑
n≥0

nxn−1 = x
1

(1− x)2
. �

One more important property (which should remind you of Taylor series from calculus):

[xn]A(x) =
(DnA)(0)

n!
where recall that the factorial is defined for non-negative integers by 0! = 1 and n! =
n · (n− 1)! =

∏n
i=1 i for n > 0.

2.2. Binomial theorem. For this section, we’ll assume our formal power series have com-
plex coefficients.

Lemma 2.10. Let A(x) be a formal power series with A(0) = 1 and let d be a positive integer.
There exists a unique formal power series B(x) with B(0) = 1 such that B(x)d = A(x).

In the notation of the lemma, we set B(x) = A(x)1/d.

Proof. The idea is to equate the coefficients of B(x)d and A(x) and solve for the coefficients of
B(x) one by one. However, the expansion of B(x)d is complicated, so we want to avoid doing
it in detail. However, we can say that [xn](B(x)d) = dbn+fn,d where the fn,d is an expression

only involving b1, . . . , bn−1. For example, [x1](B(x)d) = db1 and [x2](B(x)d) = db2 + d(d−1)
2

b2
1.

Hence we can proceed as in the proof of Theorem 2.3 by solving for the bn by induction on
n. By assumption, we already have b0 = 1 and our equation tells us that b1 = a1/d. In
general, we have dbn+fn,d = an. Since fn,d only involves b1, . . . , bn−1, we have already solved
for them by induction and we set bn = (an − fn,d)/d. The uniqueness is clear since we have
no choice about how to define bn at each step. �

Now for any integer (positive or negative) c, we know that A(x)c has constant term 1 if
A(x) does, so we can apply the lemma to find a formal power series (A(x)c)1/d with constant
term 1. We can also take the cth power of the formal power series A(x)1/d; are they the
same? Note that

((A(x)1/d)c)d = ((A(x)1/d)d)c = A(x)c.

By uniqueness of dth roots, we conclude that (A(x)1/d)c = (A(x)c)1/d, and hence we can
unambiguously define A(x)c/d to be either of these expressions, and so we have a definition
of what it means to take a rational power of a formal power series whose constant term is
1. We do also have to check that it does not depend on the c and d, but only on their ratio,
i.e., we need to know that for any other b, we have A(x)bc/bd = A(x)c/d; this can be done in
a similar way and we’ll leave it as an exercise.

Now we find an explicit formula for this when A(x) = 1 + x.
If m is a rational number and k is a non-negative integer, we define (generalized) bino-

mial coefficients by(
m

0

)
= 1,

(
m

k

)
=
m(m− 1)(m− 2) · · · (m− k + 1)

k!
(k > 0).

Theorem 2.11 (Binomial theorem). Let m be a rational number. Then

(1 + x)m =
∑
n≥0

(
m

n

)
xn.
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Note also that this gives a way to compute A(x)m whenever A(0) = 1: we just substitute
A(x)− 1 into x in the above formula:

A(x)m = (1 + (A(x)− 1))m =
∑
n≥0

(
m

n

)
(A(x)− 1)n.

This will be useful in later calculations. Let’s work out a few cases.

Example 2.12. If m is a non-negative integer, then
(
m
k

)
= 0 if k > m since the product has

a 0 in the numerator. For k ≤ m, we can write it in terms of factorials:(
m

k

)
=

m!

k!(m− k)!
.

The binomial theorem then says

(1 + x)m =
m∑
n=0

(
m

n

)
xn. �

Example 2.13. Consider m = −1. We know from before that

1

1− x
=
∑
n≥0

xn

If we substitute in −x for x, then we get

1

1 + x
=
∑
n≥0

(−1)nxn.

We should also be able to get this from the binomial theorem with m = −1. We have(
−1

n

)
=

(−1)(−2) · · · (−1− n+ 1)

n!
=

(−1)nn!

n!
= (−1)n.

More generally, consider m = −d for some positive integer d. Then from what we just did,
we have

(1 + x)−d =

(∑
n≥0

(−1)nxn

)d

.

The right side could be expanded, possibly by using induction on d, but we’d have to know
a pattern before we could proceed. Instead, let’s use the binomial theorem directly:(

−d
n

)
=

(−d)(−d− 1) · · · (−d− n+ 1)

n!
=

(−1)n(d+ n− 1)(d+ n− 2) · · · (d)

n!

= (−1)n
(d+ n− 1)!

(d− 1)!n!
= (−1)n

(
d+ n− 1

n

)
.

This gives us the identities

1

(1 + x)d
=
∑
n≥0

(−1)n
(
d+ n− 1

n

)
xn,

1

(1− x)d
=
∑
n≥0

(
d+ n− 1

n

)
xn. �
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Example 2.14. Consider m = 1/2. Then(
1/2

n

)
=

(1/2)(−1/2)(−3/2) · · · (1/2− n+ 1)

n!
=

(−1)n−1(2n− 3)(2n− 5) · · · 3
2nn!

.

This doesn’t simplify much further, so now is a good time to introduce the double factorial:
if n is a positive integer, we set n!! = n(n− 2)(n− 4) · · · . In other words, if n is odd, then
n!! is the product of all positive odd integers between 1 and n, and if n is even, then n!! is
the product of all positive even integers between 2 and n. Keep in mind this does not mean
we do the factorial twice. With our new notation, we have(

1/2

n

)
=

(−1)n−1(2n− 3)!!

2nn!
(n ≥ 2).

We also have
(

1/2
0

)
= 1 and

(
1/2
1

)
= 1/2. Remember that this means that(

1 +
x

2
+
∑
n≥2

(−1)n−1(2n− 3)!!

2nn!
xn

)2

= 1 + x.

To check that by hand, we could expand the left side, but it would be a lot of work. �

Now let’s prove the binomial theorem. We need one preparatory result.

Lemma 2.15. If m is a rational number and A(0) = 1, then D(A(x)m) = m·(DA)·A(x)m−1.

Proof. Write m = p/q for integers p, q. Then

pA(x)p−1DA = D(A(x)p) = D((A(x)m)q) = q(A(x)m)q−1D(A(x)m)

Hence

D(A(x)m) =
pA(x)p−1DA

q(A(x)m)q−1
= mA(x)m−1DA. �

Proof of Binomial Theorem. We have

[xn](1 + x)m =
(Dn((1 + x)m))(0)

n!
=
m(m− 1) · · · (m− n+ 1)

n!
=

(
m

n

)
. �

In Example 2.14, we found a square root to the formal power series 1 + x. Because
(−1)2 = 1, if we multiplied that solution by −1, we’d get another solution (its constant term
isn’t 1, so this doesn’t contradict uniqueness!). Are there more? If we were talking about
numbers, then no. The same holds for formal power series too. More generally, if we’re
trying to solve a quadratic equation

A(x)t2 +B(x)t+ C(x) = 0

where A(x), B(x), C(x) are formal power series, then there are at most two different solutions
t in formal power series (there could be only one or none). We won’t prove this because it’s
beyond the scope of this course, but we will use this later to solve some problems.

Conveniently, the quadratic formula can be used in this situation. If we know that there
is a solution to the above equation, then we have

2A(x)t = −B(x)±
√
B(x)2 − 4A(x)C(x).

(We normally would divide by 2A(x), but it might be that A(x) is not invertible, so we’re
writing it this way.) If B(x)2 = 4A(x)C(x), then there’s only one solution. In general,
B(x)2− 4A(x)C(x) might not have a square root (for example x has no square root). In the
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cases that we’ll use it, we will have B(0)2− 4A(0)C(0) = 1, so that we can use Lemma 2.10.
We won’t worry too much about the general case. If A(x) is not invertible, then A(x)

divides either −B(x) +
√
B(x)2 − 4A(x)C(x) or −B(x) −

√
B(x)2 − 4A(x)C(x) (possibly

both). The one case we’ll see later is when A(x) = x. In that case, divisibility just means

that one of the possibilities −B(x)±
√
B(x)2 − 4A(x)C(x) does not have a constant term.

2.3. Choice problems. We will now present some applications of the binomial theorem
(these have more direct combinatorial proofs, but the point is to illustrate algebraic methods
to get you used to this perspective!).

Consider counting the number of subsets of [n] = {1, . . . , n} of size k. We will encode this
problem algebraically as follows. First, consider the expansion of

(1 + x)n = (1 + x)(1 + x) · · · (1 + x).

To multiply this out, we have to choose either 1 or x at each step. This choice is the same
as a subset S ⊆ [n]: given such a set of choices, we put i ∈ S if and only if x was chosen
in the ith factor. Note then that the result is x|S|. For example, the subset {1, 4, 5} ⊂ [5]
corresponds to the underlined terms (1 + x)(1 + x)(1 + x)(1 + x)(1 + x). The conclusion:

Proposition 2.16. The number of subsets of [n] of size k is [xk](1 + x)n =
(
n
k

)
.

Corollary 2.17. The total number of subsets of [n] is 2n.

Proof. The number we want is
∑n

k=0[xk](1 + x)n, i.e., the sum of all of the coefficients of
(1 + x)n. We can get that by plugging in x = 1 into (1 + x)n, which gives 2n. �

Remark 2.18. We can also derive Pascal’s identity using this idea. Note that (1 + x)n =
(1 +x)n−1(1 +x), so in particular, the coefficient of xk is the same on both sides. On the left
it is

(
n
k

)
and on the right it is

(
n−1
k

)
+
(
n−1
k−1

)
(you either take the coefficient of xk in (1+x)n−1

and multiply by 1 or take the coefficient of xk−1 and multiply by x). This says that the
number of subsets of size k in [n] is the number of subsets of size k or k − 1 in [n− 1]. It’s
worth thinking about how to prove that last statement directly without formulas. �

You have likely already seen this in a different form. The binomial theorem tells us that
(1 + x)n =

∑n
k=0

(
n
k

)
xk, which is an equality of single-variable polynomials. We can make

this an identity of two-variable polynomials by homogenization. Namely, introduce a new
variable y, do the substitution x 7→ x/y, and since the polynomials are degree n, multiply
the result by yn to get rid of denominators:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Remark 2.19. With the 2-variable version we can do other substitutions such as x = 2 and
y = 3 to get identities like 5n =

∑n
k=0

(
n
k

)
2k3n−k. We can also take derivatives of the original

version to get identities like

n(1 + x)n−1 =
n∑
k=0

k

(
n

k

)
xk−1.

Substituting values gives plenty of other identities. �
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Finally, it makes sense to discuss the multinomial theorem at this point. In this case we
have d variables x1, . . . , xd. Given integers ki ≥ 0 such that k1 + · · ·+ kd = n, we define the
multinomial coefficient by (

n

k1, . . . , kd

)
=

n!

k1! · · · kd!
.

Theorem 2.20 (Multinomial theorem). We have

(x1 + · · ·+ xd)
n =

∑
k1+···+kd=n

(
n

k1, . . . , kd

)
xk11 · · ·x

kd
d

where the sum is over all choices of non-negative ki such that k1 + · · ·+ kd = n.

Proof. We prove this by induction on d. If d = 1, both sides are just xn1 , so the identity holds.
Otherwise, consider the 2-variable binomial theorem and substitute x 7→ x1 + · · ·+xd−1 and
y 7→ xd and use induction:

(x1 + · · ·+ xd)
n =

n∑
m=0

(
n

m

)
(x1 + · · ·+ xd−1)mxn−md

=
n∑

m=0

(
n

m

) ∑
k1+···+kd−1=m

(
m

k1, . . . , kd−1

)
xk11 · · · x

kd−1

d−1 x
n−m
d .

Now set kd = n−m and use that
(

n
n−kd

)(
n−kd

k1,...,kd−1

)
=
(

n
k1,...,kd

)
. �

Let’s see how to extract a choice problem out of this identity. Suppose that 1, . . . , d
represent colors and we have to assign these colors to n objects that are lined up in a row.
If n = d = 3 and we colored the first and last objects with the first color and the second
object with the third color, we might think of this choice as the following underlining:

(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

Multiplying those terms gives x2
1x3, and from the exponents we read off that two objects

are color 1 and one object is color 3. This gives the following interpretation of multinomial
coefficients.

Proposition 2.21. Assume we have d types of objects (type could mean color). Then
(

n
k1,...,kd

)
is the number of ways to arrange n objects in a row such that exactly ki of them have the ith
type if we interpret objects of the same type as being identical.

Example 2.22. We have 10 houses in a row and we need to paint 4 of them blue, 2 of them
red, 3 of them green, and 1 orange. Then the number of different ways to choose colors is(

10
4,2,3,1

)
= 10!

4!2!3!1!
= 12600. �

Let’s see a variation. Rather than pick subsets, consider the problem of picking multisets
of [n]. This means we can choose elements with repetition. For instance, {1, 1, 1, 2, 2, 3, 5}
is a multiset of size 7. It is easy to adapt the above argument. We will encode a multiset
of [n] as a term in the expansion of (

∑
d≥0 x

d)n: given such a choice of term, we pick i from

[n] exactly d times if our choice of term is xd in the ith factor. For instance, the multiset
{1, 1, 1, 2, 2, 3, 5} corresponds to

(1 + x+ x2 + x3 + · · · )(1 + x+ x2 + x3 + · · · )(1 + x+ · · · )(1 + x+ x2 + · · · )(1 + x+ x2 + · · · )
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since we’ve chosen 1 thrice, 2 twice, 3 once, 4 not at all, and 5 once. Again, the corresponding
term will be x|S|. Finally,

∑
d≥0 x

d = (1 − x)−1, so we conclude (using the examples from
last time):

Proposition 2.23. The number of multisets of [n] of size k is [xk](1− x)−n = (−1)k
(−n
k

)
=(

n+k−1
k

)
.

If you have not seen this before, I encourage you to think about how to get this answer
more directly. In other words, why is the number of multisets of [n] of size k the same as
the number of subsets of size k of [n+ k − 1]?

2.4. Rational generating functions. Using generating functions, we can now give a char-
acterization of sequences (with values in a field, as usual) which satisfy a linear recurrence
relation. A formal power series F (x) is a rational function if there exist polynomials
P (x) and Q(x) with Q(x) 6= 0 such that F (x)Q(x) = P (x), or in more suggestive notation,
F (x) = P (x)/Q(x). The choice of P,Q is not unique, since we can multiply or divide them
both by a common polynomial, but in fact that is all that is possible (we won’t prove it,
but this follows by unique factorization for polynomials). The degree of a rational function
F (x) is defined to be degF (x) = degP (x)−degQ(x). By our comment, this is well-defined.

Theorem 2.24. Let F (x) =
∑

n≥0 anx
n and pick an integer N ≥ 0. Let Q(x) = 1 + c1x +

· · ·+ crx
r with factorization

Q(x) = (1− γ1x)m1 · · · (1− γsx)ms

where the γi are distinct and nonzero. Then the following are equivalent:

(a) For all n ≥ N , we have

an+r + · · ·+ cr−1an+1 + cran = 0,

(b) Q(x)F (x) is a polynomial of degree < N + r,
(c) There exist polynomials f1, . . . , fs with deg fi < mi such that an =

∑s
i=1 fi(n)γni for

all n ≥ N .

In other words, (an)n≥N satisfies a linear recurrence relation if and only if F (x) is a
rational function of degree < N if and only if an is a linear combination of powers with
polynomial coefficients for n ≥ N .

Proof. Pick n ≥ N ; the coefficient of xn+r of Q(x)F (x) is an+r+ · · ·+cr−1an+1 +cran. Hence,
all of these quantities are 0 if and only if all terms xn+r with n ≥ N of Q(x)F (x) have 0
coefficient, which is the same as being a polynomial of degree < N + r. This shows the
equivalence of (a) and (b).

Assume that (b) holds, and write F (x) = P (x)
Q(x)

where P (x) is a polynomial of degree

< N + r. Using polynomial long division, we can find polynomials g(x) and P0(x) with

deg g(x) < N and degP0(x) < r such that F (x) = g(x) + P0(x)
Q(x)

. Now partial fraction

decomposition tells us there are polynomials p1(x), . . . , ps(x) with deg pi(x) < mi such that

P0(x)

Q(x)
=

s∑
i=1

pi(x)

(1− γix)mi
.
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If d < m, then by the binomial theorem,

xd

(1− γx)m
=
∑
n≥0

(
m+ n− 1

n

)
γnxn+d =

∑
n≥d

(
m+ n− d− 1

n− d

)
γn−dxn.

Note that, as a polynomial in n, we have(
m+ n− d− 1

n− d

)
=

1

(m− 1)!
(m+ n− d− 1) · · · (n− d+ 2)(n− d+ 1),

and this has roots at n = 0, . . . , d − 1, so we can extend the sum to n ≥ 0 without any
harm. In particular, the coefficients are given by f(n)γn where f(n) = γ−d

(
m+n−d−1

n−d

)
is a

polynomial of degree < m−1. So P0(x)/Q(x) is a linear combination of the form we claimed,
which proves (c) (since we only make a claim about an for n ≥ N , we can ignore g(x)).

To prove that (c) implies (b), we can reverse these steps. �

The case when s = 1 and γ1 = 1 is especially important: in (c) it means that an is a
polynomial in n for n ≥ N . We record this separately.

Corollary 2.25. Let F (x) =
∑

n≥0 anx
n and pick an integer N ≥ 0. The following are

equivalent:

(a) For all n ≥ N , we have

r∑
i=0

(−1)r−i
(
r

i

)
an+i = 0

(b) (1− x)rF (x) is a polynomial of degree < N + r,
(c) There exists a polynomial f with deg f < r such that an = f(n) for all n ≥ N .

Proof. We take Q(x) = (1− x)r =
∑r

i=0

(
r
i

)
(−1)ixi in the previous result, so ci =

(
r
i

)
(−1)i.

�

Example 2.26. Given triples of non-negative integers a = (a1, a2, a3) and b = (b1, b2, b3),
we’ll write a ≤ b if ai ≤ bi for i = 1, 2, 3. Fix a and consider all b such that b ≥ a. Letting
|b| = b1 + b2 + b3, we define

Fa(x) =
∑
b≥a

x|b| =
x|a|

(1− x)3

where the second equality follows since (b1−a1, b2−a2, b3−a3) is equivalent to a multiset of
[3] where we pick i bi − ai many times. So we see that |{b | b ≥ a, |b| = n}| is a polynomial
in n for n ≥ |a| − 2. Given another a′ = (a′1, a

′
2, a
′
3), we consider b such that b ≥ a or b ≥ a′.

Then setting a′′ = (max(a1, a
′
1),max(a2, a

′
2),max(a3, a

′
3)), we have∑

b
b≥a or b≥a′

x|b| = Fa(x) + Fa′(x)− Fa′′(x) =
x|a| + x|a

′| − x|a′′|

(1− x)3
,

so again |{b | b ≥ a, b ≥ a′, |b| = n}| is a polynomial in n for n ≥ |a′′| − 2.
This generalizes to k-tuples rather than just triples (we just wanted to keep notation

simple) and we can also allow more than just two a and a′ (but it’ll be easier once we discuss
inclusion-exclusion). �
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2.5. Catalan numbers. The Catalan numbers are denoted Cn and have a lot of different
interpretations. One of them is the number of ways to arrange n pairs of left and right
parentheses so that they are balanced: meaning that every ) pairs off with some ( that
comes before it. More formally, a word consisting of parentheses is balanced, if for every
initial segment, the number of ( is always greater than or equal to the number of ). Our
convention is that C0 = 1.

Example 2.27. For n = 3, there are 5 ways to balance 3 pairs of parentheses:

()()(), (())(), ((())), (()()), ()(()). �

Some other interpretations will be given on homework. For now, we’ll see how we can use
generating functions to obtain a formula for Cn. Define

C(x) =
∑
n≥0

Cnx
n.

Lemma 2.28. If n > 0, we have

Cn =
n−1∑
i=0

CiCn−i−1.

Proof. Every set of balanced parentheses must begin with (. Consider the ) which pairs with
it. In between the two of them is another set of balanced parentheses (possibly empty) and
to the right of them is another set of balanced parentheses (again, possibly empty). So the
set on the inside consists of i pairs, where 0 ≤ i ≤ n− 1, while the set on the right consists
of n − 1 − i pairs. These sets can be chosen independently, so there are CiCn−i−1 ways for
this to happen. Since the cases with different i don’t overlap, we sum over all possibilities
to get the identity above. �

Note that the right side of the equation above is the coefficient of xn−1 in C(x)2. So we
have

C(x) = 1 +
∑
n≥1

Cnx
n = 1 +

∑
n≥1

(
n−1∑
i=0

CiCn−i−1

)
xn

= 1 + x
∑
n≥1

(
n−1∑
i=0

CiCn−i−1

)
xn−1 = 1 + xC(x)2.

This means that C(x) is a solution of the quadratic polynomial xt2− t+ 1 = 0. Using the
quadratic formula, we deduce that C(x) is one of the solutions

1±
√

1− 4x

2x
.

Note that x isn’t invertible as a power series, so we have to be careful here. Since C(x) is
a power series, it must be that x divides the numerator, i.e., the numerator cannot have
a constant term. Which choice of sign is correct? The constant term of

√
1− 4x is, by

definition, 1, so the correct choice is a negative sign, and so

C(x) =
1−
√

1− 4x

2x
.
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Let’s use the binomial theorem now. First, we have

1− (1− 4x)1/2 = −
∑
n≥1

(
1/2

n

)
(−4x)n.

Let’s simplify the coefficients (assuming n ≥ 1):

−(−1)n4n
(

1/2

n

)
= −(−1)n4n

1
2
−1
2
−3
2
· · · −(2n−3)

2

n!
= 2n

(2n− 3)!!

n!
.

Note that (2n− 3)!!(2n− 2)!! = (2n− 2)!, so we can multiply top and bottom by (2n− 2)!!
to get

2n
(2n− 2)!

n!(2n− 2)!!
= 2

(2n− 2)!

n!(n− 1)!
=

2

n

(
2n− 2

n− 1

)
.

So:

1−
√

1− 4x

2x
=

∑
n≥1

2
n

(
2n−2
n−1

)
xn

2x
=
∑
n≥1

1

n

(
2n− 2

n− 1

)
xn−1 =

∑
n≥0

1

n+ 1

(
2n

n

)
xn.

This gives us the following formula:

Theorem 2.29. Cn =
1

n+ 1

(
2n

n

)
.

The values for n = 0, . . . , 9 are 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862.

Remark 2.30. C(x) is not a rational function, so the Cn do not satisfy a linear recur-
rence relation of any order. Since C(x) is the root of a polynomial whose coefficients are
polynomials in x, it is an example of an algebraic function. �

Here are a few other things that are counted by the Catalan numbers together with the 5
instances for n = 3:

• The number of ways to apply a binary operation ∗ to n+ 1 elements:

a ∗ (b ∗ (c ∗ d)), a ∗ ((b ∗ c) ∗ d), (a ∗ b) ∗ (c ∗ d), ((a ∗ b) ∗ c) ∗ d, (a ∗ (b ∗ c)) ∗ d.
• The number of rooted binary trees with n+ 1 leaves:

a

b

c d

a

b c

d

a b c d a b

c

d

a

b c

d

• The number of paths from (0, 0) to (n, n) which never go above the diagonal x = y
and are made up of steps either moving in the direction (0, 1) or (1, 0).

It turns out that the Catalan recursion shows up a lot. There are more than 200 other
known interpretations for the Catalan numbers.
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3. Fundamental counting problems

3.1. 12-fold way, introduction. We have k balls and n boxes. We want to count ways
to put the balls into the boxes. We can think of each assignment as a function from the
set of balls to the set of boxes. Phrased this way, we will be examining how many ways
to do this if we require f to be injective (one-to-one), or surjective (onto), or completely
arbitrary. Are the boxes supposed to be considered different or interchangeable (we also use
the terminology distinguishable and indistinguishable)? And same with the balls, are they
considered different or interchangeable?

Formally, we have two symmetric groups Sk and Sn which act on the set of functions,
and “indistinguishable” corresponds to counting orbits with respect to one or both of these
groups rather than counting the functions themselves. For example, if the balls are considered
indistinguishable but the boxes are not, then we are considering two functions to be the same
if there is a way to relabel the balls (i.e., apply a permutation in Sk) that turns one into the
other.

All in all, this will give us 12 different problems to consider, which means we want to
understand the following table:

balls/boxes f arbitrary f injective f surjective
dist/dist
indist/dist

dist/indist

{
1 if n ≥ k

0 if n < k

indist/indist

{
1 if n ≥ k

0 if n < k

Two situations have already been filled in and won’t be considered interesting (so tech-
nically we only have 10 problems, not 12). Also, we don’t have a column for when f is
bijective: that’s a special case of either of the last two columns when n = k.

3.2. Compositions. Below, n and k are positive integers.

Definition 3.1. A sequence of non-negative integers (a1, . . . , an) is a weak composition
of k if a1 + · · · + an = k. If all of the ai are positive, then it is a composition. We call n
the number of parts of the (weak) composition. �

This addresses the following counting problem: we have k objects which are placed into n
boxes (which we can think of as a function f from the k objects to the n boxes. The boxes
are labeled 1, . . . , n but the objects themselves are all identical. So the only information
we can ask is how many objects are placed in each box, i.e., we get a weak composition
(a1, . . . , an) by letting ai be the number of objects placed in the ith box. A composition
deals with the situation where the assignment f must be surjective.

Theorem 3.2. The number of weak compositions of k with n parts is
(
n+k−1

k

)
=
(
n+k−1
n−1

)
.

Proof. We’ve essentially done this already. Consider the expansion

1

(1− x)n
=

(∑
a≥0

xa

)n

=

(∑
a1≥0

xa1

)
· · ·

(∑
an≥0

xan

)
=

∑
(a1,...,an)∈Zn≥0

xa1+···+an .
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So the number of weak compositions of k with n parts is [xk](1− x)−n =
(
n+k−1

k

)
. �

Recall from Proposition 2.23 that this is the same as the number of multisets of [n] of size
k, so there should be a bijection between weak compositions and multisets. In fact, there
is: given a weak composition (a1, . . . , an) of k, we can associate a multiset of [n] of size k by
picking the number i exactly ai times.

Example 3.3. We want to distribute 20 pieces of candy (all identical) to 4 children. How
many ways can we do this? If we order the children and let ai be the number of pieces of
candy that the ith child receives, then (a1, a2, a3, a4) is just a weak composition of 20 into 4
parts, so we can identify all ways with the set of all weak compositions. So we know that
the number of ways is

(
20+4−1

20

)
=
(

23
20

)
.

What if we want to ensure that each child receives at least one piece of candy? First, hand
each child 1 piece of candy. We have 16 pieces left, and we can distribute them as we like,
so we’re counting weak compositions of 16 into 4 parts, or

(
19
16

)
. �

Corollary 3.4. The number of compositions of k into n parts is
(
k−1
n−1

)
.

Proof. If we generalize the argument in the last example, we see that compositions of k into
n parts are in bijection with weak compositions of k − n into n parts. �

We can also adapt the generating function argument in the last proof (it’s not much
different): we have

xn

(1− x)n
=

(∑
a1≥1

xa1

)
· · ·

(∑
an≥1

xan

)
=

∑
(a1,...,an)∈Zn≥1

xa1+···+an ,

so the number of compositions of k into n parts is

[xk]
xn

(1− x)n
= [xk−n]

1

(1− x)n
=

(
k − 1

n− 1

)
.

Corollary 3.5. The total number of compositions of k (into any number of parts) is 2k−1.

Proof. The possible number of parts of a composition of k is anywhere between n = 1 to
n = k. So the total number of compositions possible is

k∑
n=1

(
k − 1

n− 1

)
=

k−1∑
n=0

(
k − 1

n

)
= 2k−1. �

The answer suggests that we should be able to find a bijection between compositions of
k and subsets of [k − 1]. Here’s one: given a composition (a1, . . . , ar) of k, consider the
subset of partial sums {a1, a1 + a2, . . . , a1 + · · · + ar−1}. Since ar > 0, this is a subset of
[k−1] (we don’t include the whole sum since it’s always k and hence redundant information).
Conversely, given a subset {s1, . . . , sm} written in increasing order s1 < · · · < sm, we get a
composition of k by taking successive differences: (s1, s2 − s1, . . . , sm − sm−1, k − sm).

3.3. Words. A word is a finite ordered sequence whose entries are drawn from some set
A (which we call the alphabet). The length of the word is the number of entries it has.
Entries may repeat, there is no restriction on that. Also, the empty sequence ∅ is considered
a word of length 0.
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If A represents a set of distinguishable boxes and there are k distinguishable balls, then a
word of length k is the same thing as an assignment of balls to boxes: the ith entry records
which box the ith ball gets sent to.

Example 3.6. Say our alphabet is A = {a, b}. The words of length ≤ 2 are:

∅, a, b, aa, ab, ba, bb. �

Theorem 3.7. If |A| = n, then the number of words in A of length k is nk.

Proof. A sequence of length k with entries in A is an element in the product set Ak =
A× A× · · · × A and |Ak| = |A|k.

Alternatively, we can think of this as follows. To specify a word, we pick each of its entries,
but these can be done independently of the other choices. So for each of the k positions,
we are choosing one of n different possibilities, which leads us to n · n · · ·n = nk different
choices for words. �

So that we get used to thinking about it, we record the corresponding generating function.
Actually, there are two parameters, so we can either fix |A| and sum over k:∑

k≥0

|{words of length k in A}|xk =
∑
k≥0

|A|kxk =
1

1− |A|x
,

or we could fix k and sum over n = |A|: ∑
n≥0

nkxn.

We’ve seen this already when k = 0, 1. We know that this is a rational function of the

form Ak(x)
(1−x)k+1 where Ak(x) is a polynomial with degAk(x) ≤ k. We have A0(x) = 1 and

A1(x) = x. These are the Eulerian polynomials and have a lot of interesting properties but
we won’t elaborate any more here.

Example 3.8. A small city has 10 intersections. Each one could have a traffic light or gas
station (or both or neither). How many different configurations could this city have?

Let A be the alphabet of size 4 with symbols representing the possibilities of whether a
traffic light or gas station is there. Then a configuration is just a word of length 10, so there
are 410 possibilities. �

Example 3.9. Given a subset S ⊆ [n], we define a word wS of length n in the alphabet
{0, 1} as follows. If i ∈ S, then the ith entry of wS is 1, and otherwise the entry is 0. This
defines a function

f : {subsets of [n]} → {words of length n on {0, 1}}
which we’ve seen with a different description before. We can also define an inverse function:
given such a word w, we send it to the subset of positions where there is a 1 in w. We omit
the check that these two functions are inverse to one another. So f is a bijection, and the
previous result tells us that there are 2n words of length n on {0, 1}. �

Example 3.10. How many pairs of subsets S, T ⊆ [n] satisfy S ⊆ T? We can also encode
this problem as a problem about words. Let A be the alphabet of size 3 whose elements are:
“in S and T”, “in T but not S” and “not in T or S”. Then each pair S ⊆ T gives a word
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of length n in A: the ith entry of the word is the element which describes the position of i.
So there are 3n such pairs.

A less elegant way to compute this is to use the binomial theorem:∑
T⊆[n]

∑
S⊆T

1 =
∑
T⊆[n]

|{subsets of T}| =
∑
T⊆[n]

2|T | =
n∑
k=0

(
n

k

)
2k = (2 + 1)n = 3n. �

How about words without repeating entries? We will call these injective words. In our
balls/boxes problem, this corresponds to cases where boxes don’t get used more than once,
i.e., injective assignments. Given n ≥ k, define the falling factorial by

(n)k := n(n− 1)(n− 2) · · · (n− k + 1).

There are k numbers being multiplied in the above definition. When n = k, we have
(n)n = n!, so this generalizes the factorial function.

Theorem 3.11. If |A| = n and n ≥ k, then there are (n)k different words of length k in A
which do not have any repeating entries.

Proof. Start with a permutation of A. The first k elements in that permutation give us a
word of length k with no repeating entries. But we’ve overcounted because we don’t care how
the remaining n − k things we threw away are ordered. In particular, this process returns
each word exactly (n− k)! many times, so our desired quantity is

n!

(n− k)!
= (n)k. �

Let’s record the generating function. Should we fix k or n? Since (n)k is only nonzero if
n ≥ k, let’s fix k and sum over n (otherwise it’s a finite sum):∑

n≥k

(n)kx
n = k!

∑
n≥k

(
n

k

)
xn.

This is close to a binomial expansion. More precisely, we have

k!xk

(1− x)k+1
= k!

∑
m≥0

(
m+ k

k

)
xm+k = k!

∑
n≥k

(
n

k

)
xn.

Even though {nk | k ≥ 0} is a natural basis for the space of polynomials in n, their
generating functions are complicated when compared to {(n)k | k ≥ 0}, so for some purposes
it makes sense to write polynomials as linear combinations of (n)k rather than nk.

3.4. Set partitions. (Weak) compositions were about indistinguishable objects into distin-
guishable boxes. Now we reverse the roles and consider distinguishable objects into indis-
tinguishable boxes.

Definition 3.12. Let X be a set. A partition of X is an unordered collection of nonempty
subsets S1, . . . , Sk of X such that every element of X belongs to exactly one of the Si. An
ordered partition of X is the same, except the subsets are ordered. The Si are the blocks
of the partition. Partitions of sets are also called set partitions to distinguish from integer
partitions, which will be discussed next. �
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These are another way of thinking about surjective assignments of n distinguishable balls
to k boxes (distinguishable in the ordered case and indistinguishable otherwise). We have
swapped n and k here, to make the notation for set partitions a little more standard. We
think of each block Si as describing the contents of the ith box.

Example 3.13. Let X = {1, 2, 3}. There are 5 partitions of X:

{{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, {{1}, {2}, {3}}.

When we say unordered collection of subsets, we mean that {{1, 2}, {3}} and {{3}, {1, 2}}
are to be considered the same partition.

The notation above is a little cumbersome, so we can also write the above partitions as
follows:

123, 12|3, 13|2, 23|1, 1|2|3. �

The number of partitions of X with k blocks only depends on the number of elements of
X. So for concreteness, we will usually assume that X = [n].

Example 3.14. If we continue with our previous example of candy and children: imagine
the 20 pieces of candy are now labeled 1 through 20 and that the 4 children are all identical
clones. The number of ways to distribute candy to them so that each gets at least 1 piece
of candy is then the number of partitions of [20] into 4 blocks. �

Definition 3.15. We let S(n, k) be the number of partitions of a set of size n into k blocks.
These are called the Stirling numbers of the second kind. By convention, we define
S(0, 0) = 1. Note that S(n, k) = 0 if k > n or if k = 0 and n > 0. �

The number of ordered partitions of a set of size n into k blocks is k!S(n, k): the extra
data we need is a way to order the blocks.

At the moment, it will be hard to get nice, exact formulas for S(n, k), but we can do some
special cases:

Example 3.16. For n ≥ 1, S(n, 1) = S(n, n) = 1. For n ≥ 2, S(n, 2) = 2n−1 − 1 and
S(n, n− 1) =

(
n
2

)
. Can you see why? �

We also have the following recursive formula:

Theorem 3.17. If n ≥ k ≥ 1, then

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Proof. Consider two kinds of partitions of [n]. The first kind is when n is in its own block. In
that case, if we remove this block, then we obtain a partition of [n− 1] into k− 1 blocks. To
reconstruct the original partition, we just add a block containing n by itself. So the number
of such partitions is S(n− 1, k − 1).

The second kind is when n is not in its own block. This time, if we remove n, we get a
partition of n− 1 into k blocks. However, it’s not possible to reconstruct the original block
because we can’t remember which block it belonged to. So in fact, there are k different ways
to try to reconstruct the original partition. This means that the number of such partitions
is kS(n− 1, k).

If we add both answers, we account for all possible partitions of [n], so we get the identity
we want. �
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Here’s a table of small values of S(n, k):
n \ k 1 2 3 4 5

1 1 0 0 0 0
2 1 1 0 0 0
3 1 3 1 0 0
4 1 7 6 1 0
5 1 15 25 10 1

Let’s consider the generating function of S(n, k). Since this is nonzero only for n ≥ k,
let’s fix k and let n vary. For k ≥ 0, define

Fk(x) =
∑
n≥k

S(n, k)xn.

For k ≥ 1, the recursion above becomes∑
n≥k

S(n, k)xn = x
∑
n≥k

S(n− 1, k − 1)xn−1 + kx
∑
n≥k

S(n− 1, k)xn−1,

which translates to
Fk(x) = xFk−1(x) + kxFk(x),

or more simply Fk(x) = Fk−1(x) x
1−kx . Since F0(x) = 1, we conclude that

Fk(x) =
xk

(1− x)(1− 2x) · · · (1− kx)
.

So Fk(x) is rational and Theorem 2.24 tells us that there are constants αi,k for i = 1, . . . , k

so that S(n, k) =
∑k

i=1 αi,ki
n for n ≥ 1. We’ll see how to figure out these constants when we

talk about inclusion-exclusion.
We define B(n) to be the number of partitions of [n] into any number of blocks. This is

the nth Bell number. By definition,

B(n) =
n∑
k=0

S(n, k).

We can also consider its generating function∑
n≥0

B(n) =
∑
k≥0

Fk(x) =
∑
k≥0

xk

(1− x) · · · (1− kx)
.

Here we see an infinite sum of formal power series. It converges: for each n, we have
[xn]Fk(x) = 0 if k > n, so the partial sums [xn]

∑m
k=0 Fk(x) are constant for m > n. However,

there doesn’t seem to be any way to “simplify” this expression.
We have the following recursion:

Theorem 3.18. B(n+ 1) =
n∑
i=0

(
n

i

)
B(i).

Proof. We separate all of the set partitions of [n + 1] based on the number of elements in
the block that contains n + 1. Consider those where the size is j. To count the number of
these, we need to first choose the other elements to occupy the same block as n + 1. These
numbers come from [n] and there are j − 1 to be chosen, so there are

(
n
j−1

)
ways to do this.

We have to then choose a set partition of the remaining n + 1 − j elements, and there are
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B(n + 1 − j) many of these. So the number of such partitions is
(
n
j−1

)
B(n + 1 − j). The

possible values for j are between 1 and n+ 1, so we get the identity

B(n+ 1) =
n+1∑
j=1

(
n

j − 1

)
B(n+ 1− j).

Re-index the sum by setting i = n+ 1− j and use the identity
(
n
n−i

)
=
(
n
i

)
to get the desired

identity. �

3.5. Integer partitions. Now we come to the situation where both balls and boxes are
indistinguishable. In this case, the only relevant information is how many boxes are empty,
how many contain exactly 1 ball, how many contain exactly 2 balls, etc. We use the following
structure:

Definition 3.19. An partition of an integer n is a sequence of non-negative integers λ =
(λ1, λ2, . . . , λk) so that λ1 + λ2 + · · · + λk = n and so that λ1 ≥ λ2 ≥ · · · ≥ λk. The λi are
the parts of λ. We use the notation |λ| = n (size of the partition) and `(λ) (length of the
partition) is the number of λi which are positive. These are also called integer partitions
to distinguish from set partitions.

We will consider two partitions the same if they are equal after removing all of the parts
equal to 0.

The number of partitions of n is denoted p(n), and the number of partitions of n with k
parts is denoted pk(n). �

We’ve reversed the roles of n and k, but the partition (λ1, . . . , λk) encodes an assignment
of n balls to k boxes where some box has λ1 balls, another box has λ2 balls, etc. Remember
we don’t distinguish the boxes, so we can list the λi in any order and we’d get an equivalent
assignment. But our convention will be that the λi are listed in weakly decreasing order.

Example 3.20. p(5) = 7 since there are 7 partitions of 5:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1). �

We can visualize partitions using Young diagrams. To illustrate, the Young diagram of
(4, 2, 1) is

Y (λ) =

In general, it is a left-justified collection of boxes with λi boxes in the ith row (counting from
top to bottom).

It’s not practical to find a closed formula for p(n). Instead, we’ll study relationships
between different classes of partitions. Also, it turns out the generating functions have
relatively simple-looking formulas even though the coefficients do not.

The transpose (or conjugate) of a partition λ is the partition whose Young diagram is
obtained by flipping Y (λ) across the main diagonal. For example, the transpose of (4, 2, 1)
is (3, 2, 1, 1):
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Note that we get the parts of a partition from a Young diagram by reading off the row
lengths. The transpose is obtained by instead reading off the column lengths. The notation
is λT . If we want a formula: λTi = |{j | λj ≥ i}|.

Note that (λT )T = λ. A partition λ is self-conjugate if λ = λT .

Example 3.21. Some self-conjugate partitions: (4, 3, 2, 1), (5, 1, 1, 1, 1), (4, 2, 1, 1):

, ,

�

Theorem 3.22. The number of partitions λ of n with `(λ) ≤ k is the same as the number
of partitions µ of n such that all µi ≤ k.

Proof. We get a bijection between the two sets by taking transpose. Details omitted. �

Let’s write down generating functions for various classes of partitions to get a feel for how
it works.

Example 3.23. Let p≤k(n) be the number of integer partitions of n with at most k parts
(p≤k(0) = 1). Using the transpose of partitions, this is also the number of integer partitions
of n using only the numbers 1, . . . , k, and we will instead use this interpretation. We want
a simple expression for

∑
n≥0 p≤k(n)xn. When k = 1, we get p≤1(n) = 1 for all n, so∑

n≥0 p≤1(n)xn = 1
1−x .

I claim that ∑
n≥0

p≤k(n)xn =
k∏
i=1

1

1− xi
=

1

(1− x)(1− x2) · · · (1− xk)
.

Why? We have (1 − xi)−1 = 1 + xi + x2i + · · · , and when we multiply out
∏k

i=1(1 − xi)−1,
we make a choice of non-negative integers m1, . . . ,mk and select the term ximi from the ith
factor. This corresponds to the partition where i gets used mi times. For example, for the
partition (4, 3, 3, 1, 1, 1) and k = 4, we underline the following terms:

(1 + x+ x2 + x3 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · )(1 + x4 + x8 + · · · ).

Note that p≤k(n) = p(n) if k ≥ n. Hence we can take k →∞ to get Euler’s formula∑
n≥0

p(n)xn = lim
k→∞

∑
n≥0

p≤k(n)xn =
∏
i≥1

1

1− xi
.

More generally, for any subset S of the positive integers, the generating function for the
number of partitions that only use parts from S is

∏
i∈S

1
1−xi . �

Example 3.24. We can write down the generating function for p(n) in a different way.
Given a partition λ, its Durfee square is the largest r×r block sitting in the top-left of the
Young diagram of λ. In formulas, r = max{i | λi ≥ i}. Every Young diagram can be built
as follows: choose the size r of the Durfee square, choose a partition with at most r parts to
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put to the right of the Durfee square, and choose a partition whose parts are at most r to
but below the Durfee square. These 2 partitions can be chosen independently, so we have∑

n≥0

p(n)xn =
∑
r≥0

xr
2

(∑
n≥0

p≤r(n)xn

)2

=
∑
r≥0

xr
2

(1− x)2 · · · (1− xr)2
. �

Let podd(n) be the number of partitions of n such that all parts are odd. Let pdist(n) be
the number of partitions of n such that all parts are distinct.

Theorem 3.25 (Euler). podd(n) = pdist(n).

For example, when n = 5, both quantities are 3 since we have (5), (3, 1, 1), (1, 1, 1, 1, 1) for
podd(5) and (5), (4, 1), (3, 2) for pdist(5).

Proof. There are ways to build bijections, but we’ll prove this by showing that they have the
same generating function.

By the last example, we have∑
n≥0

podd(n)xn =
∏
i≥0

1

1− x2i+1
=

1

(1− x)(1− x3)(1− x5)(1− x7) · · ·
.

How about for pdist(n)? I claim that∑
n≥0

pdist(n)xn =
∏
i≥1

(1 + xi) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · .

To multiply out the right side, we either choose 1 or xi from the ith term, and we can only
avoid choosing 1 finitely many times (due to how infinite products are defined). What we
get then is xN where N is the sum of the i where we chose xi. But we get xN one time for
every partition of N into distinct parts, so the coefficient is pdist(N).

Now we observe that 1 + xi = 1−x2i
1−xi , so we can rewrite it as∑

n≥0

pdist(n)xn =
1− x2

1− x
· 1− x4

1− x2
· 1− x6

1− x3
· 1− x8

1− x4
· 1− x10

1− x5
· · ·

We can start cancelling: each 1 − x2i on the top cancels with the corresponding 1 − x2i on
the bottom. What we’re left with is

∏
i≥0

1
1−x2i+1 =

∑
n≥0 podd(n)xn. �

Let’s end with an example where we can construct a bijection directly.

Theorem 3.26. The number of self-conjugate partitions of n is equal to the number of
partitions of n using only distinct odd parts.

Proof. Given a self-conjugate partition, take all of the boxes in the first row and column of
its Young diagram. Since it’s self-conjugate, there are an odd number of boxes. Use this as
the first part of a new partition. Now remove those boxes and repeat. For example, starting

with we get and starting with we get .

In formulas, if λ is self-conjugate, then µi = λi − (i− 1) + λTi − (i− 1)− 1 = 2λi − 2i+ 1
and so µ1 > µ2 > · · · .
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This process is reversible: let µ be a partition with distinct odd parts. Each part µi can
be turned into a shape with a single row and column, both of length (µi + 1)/2. Since the
µi are distinct, these shapes can be nested into one another to form the partition λ (this is
easiest to understand by studying the two examples above). �

Example 3.27. What about their generating functions? Following our previous examples,
the generating function for the number of partitions using only distinct odd parts is given
by ∏

i≥0

(1 + x2i+1).

How about for self-conjugate partitions? It has the same generating function by the previous
result, but let’s think differently. Going back to the Durfee square decomposition of a
partition λ, the partition we choose to put to the right of the Durfee square is the transpose
of the partition we put below, so they determine each other. That gives the following
generating function for self-conjugate partitions:∑

r≥0

xr
2
∑
n≥0

p≤r(n)x2n =
∑
r≥0

xr
2

(1− x2)(1− x4) · · · (1− x2r)
.

So the result above says this is the same as
∏

i≥0(1+x2i+1) which doesn’t seem so obvious. �

3.6. 12-fold way, summary. We have k balls and n boxes. We want to count the number
of assignments f of balls to boxes. We considered 3 conditions on f : arbitrary (no conditions
at all), injective (no box receives more than one ball), surjective (every box has to receive at
least one ball). We also considered conditions on the balls: indistinguishable (we can’t tell
the balls apart) and distinguishable (we can tell the balls apart) and similarly for the boxes:
they can be distinguishable or indistinguishable.

balls/boxes f arbitrary f injective f surjective
dist/dist nk, see (1) (n)k, see (2) n!S(k, n), see (3)

indist/dist

(
n+ k − 1

k

)
, see (4)

(
n

k

)
, see (5)

(
k − 1

n− 1

)
, see (6)

dist/indist
n∑
i=1

S(k, i), see (7)

{
1 if n ≥ k

0 if n < k
, see (8) S(k, n), see (9)

indist/indist p≤n(k), see (10)

{
1 if n ≥ k

0 if n < k
, see (11) pn(k), see (12)

(1) These are words of length k in an alphabet of size n.
(2) These are words of length k without repetitions in an alphabet of size n. Recall that

(n)k = n(n− 1)(n− 2) · · · (n− k + 1).

(3) These are ordered (set) partitions of [k] into n blocks. Recall that S(k, n) is the
Stirling number of the second kind, i.e., the number of partitions of [k] into n blocks.

(4) These are multisets of [n] of size k; equivalently, weak compositions of k into n parts.
(5) These are subsets of [n] of size k.
(6) These are compositions of k into n parts.
(7) These are set partitions of [k] where the number of blocks is ≤ n.
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(8) If n < k, then we can’t assign k balls to n boxes without some box receiving more
than one ball (pigeonhole principle), so the answer is 0 in that case. If n ≥ k, then
there is certainly a way to make an assignment, but they’re all the same: we can’t
tell the boxes apart, so it doesn’t matter where the balls go.

(9) These are set partitions of [k] into n blocks.
(10) These are the number of integer partitions of k where the number of parts is ≤ n.
(11) The reasoning here is the same as (8).
(12) These are the number of integer partitions of k into n parts.

3.7. Cycles in permutations. Recall that (x)k = x(x− 1) · · · (x− k + 1).

Proposition 3.28. We have an equality of polynomials in x:

xn =
n∑
k=0

S(n, k)(x)k.

Proof. Pick a positive integer d ≥ n. Then dn is the number of functions [n] → [d]. We
separate functions by their image, which is some subset S ⊆ [d]. These are equivalently
surjective functions [n] → S, and if |S| = k, then there are S(n, k)k! many such functions.
This only depends on |S|, so we have

dn =
d∑

k=0

(
d

k

)
k!S(n, k) =

d∑
k=0

S(n, k)(d)k.

Since S(n, k) = 0 if k > n, for the last sum, we only have to go up to n instead of d. This
means d is a root of xn −

∑n
k=0 S(n, k)(x)k. Since nonzero polynomials only have finitely

many roots, this difference must be identically 0. �

We can ask the inverse problem: what is the coefficient of xk in (x)n? It turns out to have
a nice interpretation in terms of permutations.

Recall the cycle decomposition of a permutation σ ∈ Sn: starting with any 1 ≤ i ≤ n,
we consider the sequence i, σ(i), σ2(i), . . . , σk−1(i) where σk(i) = i (there is guaranteed to be
such a k since σ has finite order). We write the cycle as i→ σ(i)→ · · · → σk−1(i)→ i. Note
that k could be 1, in which case the cycle has length 1 and also that there isn’t a unique
beginning (we could have started and ended with σ(i) instead of i). For example, if in 1-line
notation, σ = 135624, then the cycle decomposition is 1 → 1, 2 → 3 → 5 → 2, 4 → 6 → 4.
The cycles form a set partition of [n] but they encode more information.

Let c(n, k) be the number of permutations in Sn with exactly k different cycles. We use
the convention that c(0, 0) = 1. Note that c(n, 0) = 0 if n > 0. These are the (signless)
Stirling numbers of the first kind.

Proposition 3.29. If n ≥ k ≥ 1, we have

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k).

Proof. We break up the permutations with k cycles into 2 types.
The first type consists of permutations such that n is its own cycle. Removing this cycle

gives a bijection between such permutations and permutations of Sn−1 with k− 1 cycles, so
the total number is c(n− 1, k − 1).

The second type consists of permutations such that n is not in its own cycle. In that
case, consider its cycle, more specifically, the portion i → n → j. Since n is not in its own
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cycle, we know that i 6= n and j 6= n. We define a permutation τ ∈ Sn−1 by τ(i) = j and
τ(k) = σ(k) for all k 6= i. If we remember i, then we can reconstruct σ uniquely, so we get
a bijection between the second type of permutations and pairs (i, τ) where 1 ≤ i ≤ n − 1
and τ ∈ Sn−1 has k cycles. So there are (n − 1)c(n − 1, k) many of the second type of
permutations. �

Corollary 3.30. For n ≥ 0, we have

n∑
k=0

c(n, k)xk = x(x+ 1) · · · (x+ n− 1),

where the right side is 1 if n = 0, and in particular,

n∑
k=0

(−1)n−kc(n, k)xk = (x)n.

Proof. We prove the first identity by induction on n. For n = 0, both sides are 1. Similarly,
if n = 1, both sides are x. Now suppose n ≥ 2. Then c(n, 0) = c(n− 1, 0) = 0 and

n∑
k=1

c(n, k)xk = x
n∑
k=1

c(n− 1, k − 1)xk−1 + (n− 1)
n∑
k=1

c(n− 1, k)xk

= x
n−1∑
k=0

c(n− 1, k)xk + (n− 1)
n−1∑
k=0

c(n− 1, k)xk

= (x+ n− 1)
n−1∑
k=0

c(n− 1, k)xk

= (x+ n− 1) · x(x+ 1) · · · (x+ n− 2)

where the last equality is by induction, and this proves what we claimed.
The second identity follows by doing the substitution x 7→ −x and multiplying by (−1)n.

�

The coefficients (−1)n−kc(n, k) are the (actual) Stirling numbers of the first kind,
and are usually denoted s(n, k).

Finally, we have the following “inversion formula”:

Corollary 3.31. For n, ` ≥ 0, we have

n∑
k=0

S(n, k)s(k, `) = δn,` =
n∑
k=0

s(n, k)S(k, `).

Proof. We have

xn =
n∑
k=0

S(n, k)(x)k =
n∑
k=0

S(n, k)
k∑
`=0

s(k, `)x`.

The first sum is the coefficient of x` in xn, i.e., δn,` since the x` are linearly independent.
The second sum is similar keeping in mind that the (x)` are also linearly independent. �
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3.8. Counting subspaces. It turns out that a lot of what we’ve done has a certain “q-
enhancement”, meaning that we can replace the numbers in our formulas by polynomials in
q such that plugging in q = 1 gives the original result. There’s a lot one can do here, so we’ll
just focus on one important example coming from linear algebra over finite fields.

We’ve been somewhat ambivalent about our scalars up until now, but mostly just using
that they are fields: this is just a structure consisting of “numbers” where you can add,
subtract, multiply, and divide (by nonzero elements). The familiar examples are the field of
rational numbers, real numbers, and complex numbers. We’ll focus here on cases where our
field of scalars is finite.

The most important example to keep in mind is Z/p with p a prime number. You’ve
already seen in your algebra class that we can add, subtract, and multiply. You’ve probably
also seen that we can divide.3 For example, if p = 7, then in Z/7, we have

1

1
= 1,

1

2
= 4,

1

3
= 5,

1

4
= 2,

1

5
= 3,

1

6
= 6.

We won’t actually be doing this explicitly, we’ll just need to know that it can be done. If
q = pk is a positive power of a prime, then there is a unique field (up to isomorphism),
denoted Fq of size q. If q = p, then Fp

∼= Z/p. The main thing you need to know is that
we can add, subtract, multiply, and divide by nonzero numbers, and we can also do linear
algebra with the scalars coming from Fq (if it makes it easier, you can just think of the
case q = p and you won’t really lose much). I won’t reprove everything from scratch in the
interest of time. The main point of doing this is that we can count things since everything
is a finite set.

Lemma 3.32. If V is an n-dimensional Fq-vector space, then |V | = qn.

Proof. Pick a basis v1, . . . , vn for V . Then every element of V is uniquely of the form
c1v1 + · · · + cnvn for ci ∈ Fq which can be chosen arbitrarily. So vectors are the same as
words of length n in Fq, and there are qn many of them. �

Example 3.33. How many invertible 2 × 2 matrices are there with entries in Fq? This

is the set of matrices

[
a b
c d

]
with a, b, c, d ∈ Fq such that ad − bc 6= 0. Equivalently, the

column vectors (a, c) and (b, d) form a basis for F2
q, which is also equivalent to saying that

(a, c) 6= (0, 0) and (b, d) is not a scalar multiple of (a, c). We use this as follows: the number
of ways to pick a nonzero vector is |F2

q| − 1 = q2 − 1. How many scalar multiples does it

have? It spans a 1-dimensional subspace, so there are q multiples. Hence there are q2 − q
ways to choose (b, d), and our answer is (q2 − 1)(q2 − q). �

We’ll generalize this to size n. The set of invertible n× n matrices is denoted GLn(Fq).

Proposition 3.34. The number of k-tuples of linearly independent vectors (v1, . . . , vk) in
an n-dimensional Fq-vector space is

k−1∏
i=0

(qn − qi) = (qn − 1)(qn − q) · · · (qn − qk−1).

3If not, note that multiplication by any nonzero a ∈ Z/p is injective because ab = 0 implies that p divides
ab; since it does not divide a, it has to divide b. Since Z/p is finite, injective implies surjective, so there is a
b such that ab = 1. Or if you know Fermat’s little theorem, you can just take b = ap−2.
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In particular, the number of invertible n× n matrices is

|GLn(Fq)| =
n−1∏
i=0

(qn − qi) = (qn − 1)(qn − q) · · · (qn − qn−1).

Proof. These can be chosen as follows: v1 is nonzero, v2 is not a multiple of v1, v3 is not in
the linear span of {v1, v2}, and in general, the vith vector is not in the linear span of the
first {v1, . . . , vi−1}. The linear span of {v1, . . . , vi−1} vectors has dimension i− 1 since they
are linearly independent, and so there are qn − qi−1 choices for vi. This gives the product
formula above.

For the second statement, we use that a square matrix is invertible if and only if its
columns form a basis. �

Finally, we come to our “q-analogue”. Let Grk(F
n
q ) be the set of k-dimensional subspaces

of Fn
q . This is called the Grassmannian.

Theorem 3.35. The number of k-dimensional subspaces is

Grk(F
n
q ) =

(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
.

Proof. Consider pairs (W,v) where W is a k-dimensional subspace and v is an ordered basis
for W . Note that v determines W , and the choice of v is just a choice of k ordered linearly
independent vectors. By Proposition 3.34, there are (qn − 1) · · · (qn − qk−1) many of these.
The number of ordered bases of each W is the same, and again by Proposition 3.34 is given by
(qk−1) · · · (qk−qk−1). Hence the number of k-dimensional spaces is the ratio as claimed. �

Let’s simplify this ratio as follows. Define the q-number and q-factorial by

[n]q =
qn − 1

q − 1
= 1 + q + · · ·+ qn−1, [n]q! = [n]q · · · [2]q[1]q.

By pulling out common powers of q, we have

Grk(F
n
q ) =

[n]q[n− 1]q · · · [n− k + 1]q
[k]q!

=
[n]q!

[k]q![n− k]q!
,

which we will call the q-binomial coefficient, and denote by

[
n
k

]
q

. It’s not obvious from

the formula, but this turns out to be a polynomial in q. Note that evaluating [n]q at q = 1
gives n, so evaluating the q-binomial coefficient at q = 1 gives

(
n
k

)
.

Example 3.36. For n = 4 and k = 2, we have[
4
2

]
q

=
(q4 − 1)(q4 − q)
(q2 − 1)(q2 − q)

= 1 + q + 2q2 + q3 + q4.

which is visibly a polynomial that evaluates to 6 =
(

4
2

)
at q = 1. �

We can see directly that |Grk(F
n
q )| is a polynomial in q using reduced-row echeleon form.

We can represent k-dimensional subspaces of Fn
q as the row space of a k× n matrix. This is

not a unique way to represent subspaces, but if we put them into reduced row-echelon form
(row operations don’t change the row space!), then we do get a unique representation.
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Example 3.37. For n = 4 and k = 2, every full rank 2 × 4 matrix in reduced row-echelon
form has exactly 1 of the 6 following types:[

1 0 ∗ ∗
0 1 ∗ ∗

]
,

[
1 ∗ 0 ∗
0 0 1 ∗

]
,

[
1 ∗ ∗ 0
0 0 0 1

]
,[

0 1 0 ∗
0 0 1 ∗

]
,

[
0 1 ∗ 0
0 0 0 1

]
,

[
0 0 1 0
0 0 0 1

]
.

where the entries in the ∗ are some elements of Fq. Furthermore, every choice of scalars gives
the reduced row-echelon form for some subspace, so the number of subspaces with reduced
row-echelon form of each of the 6 types is given by a power of q (the power being the number
of ∗). This gives a manifestly polynomial expression |Gr2(F4

q)| = 1 + q + 2q2 + q3 + q4.
Note one thing: if we delete the columns with pivots and reverse the remaining columns,

the ∗ form a Young diagram. We actually get every single one that fits into a 2×2 square. �

This is the Schubert decomposition of Gr2(F4
q). Here’s how it generalizes for Grk(F

n
q ):

• The reduced-row echelon form of a full rank k×n matrix splits into one of
(
n
k

)
types:

these are indexed a subset of k columns (the ones that contain the pivots).
• Given a subset S = {s1 < s2 < · · · < sk} of the indices of the k columns, the number

of ∗ in row i is n − si − (k − i). This gives us a bijection between the subsets and
Young diagrams fitting into the k × (n− k) box.
• Hence we get |Grk(F

n
q )| =

∑
λ⊆k×(n−k) q

|λ|.

Remark 3.38. There is no field of size 1, but if it were to exist, the formula

lim
q→1
|Grk(F

n
q )| =

(
n

k

)
suggests that finite sets should play the role of n-dimensional vector spaces and k-element
subsets are then k-dimensional subspaces. As stated, this is not rigorous, and is part of a
general heuristic that the combinatorics of finite sets should be interpreted as linear algebra
over this pretend field. For more information, look up the phrase “field with one element”.

�

Example 3.39. Now fix two integers k1 < k2 such that 1 ≤ k1 < k2 ≤ n. How many pairs
of subspaces W1 and W2 are there such that dimWi = ki and W1 ⊆ W2? First we can choose

W2 in

[
n
k2

]
q

many ways. Now W1 is just a choice of k1-dimensional subspace of W2, and

W2 is abstractly isomorphic to Fk2
q . Hence once W2 is chosen, there are always

[
k2

k1

]
q

many

choices for W1. In particular, the total number is[
n
k2

]
q

[
k2

k1

]
q

=
[n]q!

[k1]q![k2 − k1]q![n− k2]q!
.

It’s sensible to denote the latter quantity by

[
n

k1, k2 − k1, n− k2

]
q

and call it a q-multinomial

coefficient.
What if we chose W1 first? How do we count subspaces W2 that contain W1? The key is

to consider the quotient vector space Fn
q /W1 together with the quotient map Fn

q → Fn
q /W1.
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The image of W2 will always have dimension k2−k1. Similarly, for any (k2−k1)-dimensional
subspace of Fn

q /W1, its preimage is a k2-dimensional subspace that contains W1, so we get
a bijection between choices of W2 and (k2 − k1)-dimensional subspaces of a vector space of

dimension n− k1, and there are

[
n− k1

k2 − k1

]
q

many of them.

We can generalize to more containments of subspaces, but I’ll leave it as an exercise. �

What else? For example, invertible matrices seem like the right generalization of the
symmetric group (they’re permutations of Fn

q that preserve the linear structure). However,
plugging in q = 1 into the formula for |GLn(Fq)| gives 0, so it’s maybe not a good q-analogue
of n!. But if we divide by all of the powers of q − 1 and evaluate, we do get n!. It turns out
that a more direct q-analogue is to count complete flags: choices of increasing sequences of
subspaces W1 ⊂ W2 ⊂ · · · ⊂ Wn−1 ⊂ Fn

q such that dimWi = i. Generalizing the previous
example leads to the conclusion that there are [n]q! many of these and plugging in q = 1
gives n!.

4. Walks in graphs

4.1. Adjacency matrix.

Definition 4.1. A graph G is a pair of sets (V,E) where V is the set of vertices, and E
is a multiset from V ∪

(
V
2

)
, called the edges. The edges in V are called loops. Given an

edge, the vertices that it uses are called its endpoints (they could be the same in the case of
a loop). If there are no loops and each pair of vertices has at most one edge between them,
then the graph is called simple. �

We think of elements of V as representing nodes, and the elements of E in
(
V
2

)
tell us which

nodes are connected to each other (and how many times). We can think of the elements of
E in V as representing self-connections, so we can draw them as loops beginning and ending
at the same node. Note there is nothing about locations or lengths in this definition. So
while we can draw a graph, such a pictorial representation is not unique.

Definition 4.2. A directed graph is a graph where every edge has a direction. Alterna-
tively, the set of edges is now a multiset from V × V , where (v1, v2) means an edge that is
directed from v1 towards v2. �

If G is a graph with n vertices, then the adjacency matrix is an n×n matrix which encodes
G. There are 2 versions, depending on if G is a directed graph or a plain graph.

If G is a graph with vertices v1, . . . , vn, then set aij to be the number of edges between vi
and vj. Define its adjacency matrix AG to be the n × n matrix whose (i, j) entry is aij.
Note that AG is a symmetric matrix since aij = aji. Writing down AG depends on how we
order the vertices, but things we calculate from AG won’t usually depend on the ordering.

Here is a graph and its adjacency matrix:

v1

v3 v2

v4


0 1 2 0
1 0 1 1
2 1 0 2
0 1 2 0

 .
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If G is a directed graph with vertices v1, . . . , vn, then set aij to be the number of edges
between vi and vj that are going from vi to vj and again AG is the n×n matrix whose (i, j)
entry is aij. In general, AG need not be symmetric.

For example, here’s a directed graph and its adjacency matrix:

v1
//

��

v2

~~
v3

0 1 1
0 0 1
0 0 0



Definition 4.3. A walk in a graphG is a sequence v0, e1, v1, e2, v2, . . . , ek, vk which alternates
between vertices and edges such that for all i = 1, . . . , k, vi−1 and vi are the endpoints of
ei (so they must be different unless ei is a loop). The beginning of the walk is v0 and the
ending is vk. If G is directed, we also require that ei = (vi−1, vi), i.e., that it is oriented from
vi−1 towards vi. A walk is closed if v0 = vk. The length of the walk is k. �

Note that a walk of length 0 is just a choice of vertex, so there is always 1 walk of length
0 from a vertex to itself. Also, A0 is the identity matrix.

Theorem 4.4. Let G be a graph (directed or not) with vertices v1, . . . , vn. Let A = AG be
its adjacency matrix. Then for all integers k ≥ 0, the number of walks of length k starting
at vi and ending at vj is (Ak)i,j.

Proof. We prove this by induction on k. When k = 0, A0 is the identity and there is exactly
1 walk of length 0 between a vertex and itself and 0 for different endpoints.

Now suppose the result is known for k, we need to prove it for k + 1. Let B = Ak. Then

(Ak+1)i,j = (BA)i,j =
n∑
`=1

Bi,`A`,j

by definition of matrix multiplication. The term Bi,`A`,j counts the following: the number
of pairs of walks from vi to v` of length k and the number of walks from v` to vj of length 1.
For each such pair, we can concatenate the walks to get a walk from vi to vj of length k+ 1.
Every such walk is accounted for if we sum over all ` since the last step before reaching vj
is some v` (and we’re including all of them). In particular, the sum counts the number of
walks of length k + 1 from vi to vj, so we’ve proven the statement for k + 1. �

Remark 4.5. A general fact from linear algebra (probably not discussed in Math 18) is
that an n× n symmetric matrix whose entries are all real numbers is always diagonalizable
(this is the spectral theorem, and you can use it in this course if needed). In particular, this
applies to AG in the undirected case. So we can write AG = BDB−1 where D is a diagonal
matrix whose entries are the eigenvalues of AG. In particular, AkG = BDkB−1. So if we want
general formulas for the number of walks of length k as k varies, it’s enough to diagonalize
AG. So we see that the eigenvalues of the adjacency matrix are relevant for counting walks,
which is surprising.

In the directed case, AG need not be diagonalizable in general. �

Let tr denote the trace of a square matrix. This is the sum of the diagonal entries, and
also the sum of the eigenvalues (with multiplicity).
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Proposition 4.6. If λ1, . . . , λn are the eigenvalues of A, then λk1, . . . , λ
k
n are the eigenvalues

of Ak, and hence
n∑
i=1

(Ak)i,i = tr(Ak) = λk1 + · · ·+ λkn.

In particular, if A = AG, then tr(AkG) is the number of closed walks in G of length k.

Proof. The trace of a matrix is the sum of its eigenvalues, so the main content is that the
eigenvalues of Ak are λk1, . . . , λ

k
n (with these multiplicities). I’ll only prove this when A is

diagonalizable. Let v1, . . . , vn be an eigenbasis with eigenvalues λ1, . . . , λn. Then Akvi =
λki vi, so v1, . . . , vn is also an eigenbasis for Ak. �

Remark 4.7. If we don’t assume that A is diagonalizable, we can prove the result using the
Jordan canonical form. �

Example 4.8. Fix an integer n ≥ 1. Let f(k) be the number of words a1 · · · ak of length k
in [n] such that (1) ai 6= ai+1 for i = 1, . . . , k− 1 and (2) ak 6= a1. If we only impose (1) and
don’t care about (2), the number of such words is just n(n − 1)k−1, but how do we control
the relation between ak and a1?

We can interpret a word as a walk of length k − 1 in a graph with n vertices v1, . . . , vn so
that there is an edge between vi and vj if and only if i 6= j. This is the complete graph,
denoted Kn. Letting A be its adjacency matrix, we’re interested in

∑
i 6=j(A

k−1)i,j.

From what we just said, n(n − 1)k−1 is the total number of walks of length k − 1 in Kn

(with any starting or ending point). The number of words satisfying (1) but not (2) is the
number of closed walks, so

n(n− 1)k−1 = f(k) + tr(Ak−1).

So we want to know the eigenvalues of A. Letting e1, . . . , en be the standard basis vectors,
we have Aei = (

∑n
j=1 ej)− ei. So a quick calculation shows that

e1 + · · ·+ en, e1 − e2, e2 − e3, . . . , en−1 − en
are eigenvectors of A with eigenvalues n − 1,−1,−1, . . . ,−1. Further, they are linearly
independent and hence an eigenbasis. So tr(Ak−1) = (n − 1)k−1 + (n − 1)(−1)k−1, and we
solve:

f(k) = n(n− 1)k−1 − tr(Ak−1)

= n(n− 1)k−1 − (n− 1)k−1 − (n− 1)(−1)k−1

= (n− 1)k + (n− 1)(−1)k. �

4.2. Transfer matrix method. As we just saw, we can set up some counting problems as
counting paths in a graph. So we now study generating functions of the form

FA;i,j(x) =
∑
k≥0

(Ak)i,jx
k

where A is an n× n matrix and 1 ≤ i, j ≤ n.
Below, if B is any n× n matrix, then (B; j, i) is the (n− 1)× (n− 1) submatrix obtained

by deleting row j and column i from it.



40 STEVEN V SAM

Theorem 4.9. We have

FA;i,j(x) = (−1)i+j
det((idn − xA); j, i)

det(idn − xA)
,

so that FA;i,j(x) is a rational generating function.

Proof. Consider
∑

k≥0A
kxk, which we think of as an n× n matrix whose entries are formal

power series in x. A calculation similar to Example 2.2 shows that this is the inverse of the
matrix idn − xA. So we want the (i, j)-entry of (idn − xA)−1. So the formula that we claim
follows from Cramer’s rule, which computes this quantity.

As for the last claim, both determinants give us polynomials in x. �

Let λ1, . . . , λn be the eigenvalues of A. These are the roots of the characteristic polynomial

(t− λ1) · · · (t− λn) = det(tidn − A).

By doing the substitution t 7→ 1/x and multiplying both sides by xn, we get

(1− λ1x) · · · (1− λnx) = det(idn − xA).

Hence from §2.4, we know that (Ak)i,j has a formula in terms of the eigenvalues λ1, . . . , λn
of A. In the simplest case when all of the eigenvalues are distinct, we know that there exist
constants c1, . . . , cn (they depend on i, j) such that

(Ak)i,j = c1λ
k
1 + · · ·+ cnλ

k
n

for k ≥ max(0, degFA;i,j(x) + 1), and in all cases, n − 1 ≥ degFA;i,j(x), so we can say it
holds for k ≥ n without any specific knowledge.

In particular, without doing any calculations, we see that the number of paths in a graph
between vi and vj of length k satisfies a linear recurrence relation with respect to k.

Example 4.10. Consider length n words in [3] such that 11 and 23 do not appear consec-
utively. These can be encoded as walks of length n− 1 in the following graph G

1

�� ��
2

OO

YY 3oo

^^

YY

with adjacency matrix

AG =

0 1 1
1 1 0
1 1 1

 .
Then det(id3 − xAG) = 1 − 2x − x2 + x3. For simplicity, let’s just compute the number of
words starting with 1 and ending at 3. Then det(id3−xAG; 3, 1) = x−x2, so the generating
function is

x− x2

1− 2x− x2 + x3
,

but remember that the coefficient of xn is the number words of length n+ 1. �

Example 4.11. Consider the problem of covering a n×k chessboard with 1×2 size dominoes
(placed horizontally or vertically) so that no two overlap. We want to know how many ways
fn(k) this can be done.

(1) If n = 1, there is exactly 1 way if k is even and no way to do it if k is odd.
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(2) If n = 2, consider the right most portion of the board. Either the last column has
a vertical domino, or the last two columns have 2 horizontal dominoes. This tells us
there is a recurrence f2(k) = f2(k − 1) + f2(k − 2) for k ≥ 3, while f2(1) = 1 and
f2(2) = 2. So these are the Fibonacci numbers.

(3) We can try the same analysis for n = 3, though it seems harder to guess what the
different cases should be, but you could squeeze out a recurrence relation with enough
effort.

For general n, we can encode tilings as walks in a graph. First, given a valid tiling, consider
a single column. In each square, we either have a horizontal domino or vertical domino. If
we remember which squares are the left portion of a horizontal domino, we can reconstruct
the rest of the dominoes uniquely. Hence we can encode each column by a word of length
n in the alphabet {0, 1} (1 denotes the squares which are the left portion of a horizontal
domino and 0 denotes the others).

Let Gn be the directed graph whose vertices are length n words in {0, 1}. We have an edge
from one word w to another word w′ if it’s possible to place dominoes so that two consecutive
columns are labeled by w and w′ (don’t worry about whether it can be completed to a tiling
of the whole chessboard). The benefit is that determining the edges is a local problem: we
only consider 2 columns at a time. For n = 2, G2 looks like

10 // 01oo

11 // 00oo
��

Finally we have boundary conditions. The rightmost column always has to be all 0’s. On
the other hand, there are restrictions on which words can appear as the leftmost column. For
n = 2, only 00 and 11 are the only valid leftmost columns. Note that 10 and 01 appearing
in their own component just says you never see these in a tiling of a chessboard. Without
figuring out what all of the conditions are, we can say that the number of valid tilings is the
number of walks of length k−1 starting where the first vertex is a valid leftmost column and
the last vertex is all 0’s. This is a finite sum of generating functions of the form FAGn ;i,j(x),
so it is rational by Theorem 4.9.

In particular, there exists a linear recurrence relation for fn(k) with respect to k whenever
n is fixed. We won’t pursue it here, but it is possible to get a closed formula for all n.

Another benefit of this approach is that we can change the boundary conditions to address
related problems. For example, we could glue together the left and right ends of the chess-
board and ask about tiling the resulting circular band. Then we’d be asking about closed
walks in Gn. �

Remark 4.12 (If you know some complexity theory). If we fix a set of starting vertices and
ending vertices, then a directed graph can also be interpreted as a deterministic finite-state
automaton (DFA). Hence in the above problems, the words we are counting are the words
in a regular language. In fact, it’s no more general, so that counting words in a regular
language can be done with the transfer-matrix method. Hence, if L is a regular language
with respect to some finite alphabet and ak is the number of words of length k in L, then∑

k≥0 akx
k is a rational function.

There is a natural hierarchy of languages. For example, the languages described by an
unambiguous context-free grammar have an algebraic generating function, i.e., they are the
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solution to a polynomial equation (in t) whose coefficients are themselves polynomials (in
x). �

5. Exponential generating functions

5.1. Products of exponential generating functions. Let a0, a1, a2, . . . be a sequence of
numbers. The associated exponential generating function (EGF) is the formal power
series

A(x) =
∑
n≥0

an
xn

n!
,

where recall that n! = n(n− 1)(n− 2) · · · 2 · 1 and 0! = 1. When an = 1 for all n, we use the
notation

ex = exp(x) =
∑
n≥0

xn

n!
.

Lemma 5.1. If A(x) =
∑

n≥0 an
xn

n!
and B(x) =

∑
n≥0 bn

xn

n!
, then A(x)B(x) =

∑
n≥0 cn

xn

n!

where cn =
∑n

i=0

(
n
i

)
aibn−i.

Proof. The coefficient of xn in A(x)B(x) is
∑n

i=0
ai
i!

bn−i
(n−i)! . By definition it is also cn/n!, so

cn =
∑n

i=0

(
n
i

)
aibn−i. �

It will be convenient to think of the coefficients of an EGF as counting the number of
structures on a set. Formally, a structure is a function α that takes as input a finite set
S (including S = ∅) and outputs another finite set α(S), with the key property that if
|S| = |T |, then |α(S)| = |α(T )|. We’ve been dealing with many of these. Some examples
are α(S) is the set of 2-element subsets of S, or the set of set partitions of S, or the set of
bijections from S to itself, etc. We will say that elements of α(S) are structures of type α,
and the associated exponential generating function is

Eα(x) =
∑
n≥0

|α([n])|x
n

n!
.

Let α, β be structures. We can add and multiply structures:

(α + β)(S) = α(S)q β(S)

(α · β)(S) =
∐
T⊆S

α(T )× β(S \ T ).

The sum is just taking disjoint union. The product requires more explanation: we are taking
the disjoint union over all subsets T in S, picking an α-structure on T and a β-structure on
its complement. We’ll see in examples why this is a sensible thing to do, but first, we show
that these operations behave well with respect to EGFs:

Proposition 5.2. We have

Eα+β(x) = Eα(x) + Eβ(x), Eα·β(x) = Eα(x)Eβ(x).

Proof. For the sum, we have |(α + β)([n])| = |α([n])|+ |β([n])| since we’re taking a disjoint
union.
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For the product, we have

|(α · β)([n])| =
∑
T⊆[n]

|α(T )| · |β([n] \ T )|.

Since the size of α(T ) only depends on |T | and similarly for β([n] \T ), we can just sum over
possible sizes of T :

n∑
i=0

(
n

i

)
|α([i])| · |β([n− i])|

which is the coefficient of Eα(x)Eβ(x) by Lemma 5.1. �

Example 5.3. Consider a set of n football players. We want to split them up into two
groups. Both groups needs to be assigned an ordering and the second group additionally
needs to choose one of 3 colors for their uniform. Let cn be the number of ways to do this.

This scenario calls for a product of structures:

• Let α(S) be the set of orderings of S, so |α(S)| = |S|!. We have

Eα(x) =
∑
n≥0

n!
xn

n!
=

1

1− x
.

• Let β(S) be the set of pairs (σ, f) where σ is an ordering of S and f : S → [3] is an
assignment of the 3 colors to each element. So |β(S)| = |S|!3|S|. We have

Eβ(x) =
∑
n≥0

n!3n
xn

n!
=

1

1− 3x
.

Then (α·β)([n]) is the set of things we’re asking about (I glossed over it, but it’s important
that the definitions above make sense and give the correct thing when S = ∅, otherwise our
product interpretation will be incorrect when T = ∅, for example), so its EGF is

Eα·β(x) =
1

(1− x)(1− 3x)
.

In particular,

cn/n! = [xn]
1

(1− x)(1− 3x)
= [xn]

(
3/2

1− 3x
− 1/2

1− x

)
=

3

2
3n − 1

2
,

and hence

cn = n!(
3

2
3n − 1

2
) =

n!

2
(3n+1 − 1). �

Example 5.4. We have n distinguishable telephone polls which are to be painted either red
or blue. The number which are blue must be even. Let cn be the number of ways to do this.

Again we want to interpret this as counting the product of two structures (we’ll think of
the elements of sets as telephone polls):

• Let α(S) be the set of ways to paint the polls red according to our rules, so |α(S)| = 1
for all S (even S = ∅) and Eα(x) = ex.
• Let β(S) be the set of ways to paint the polls blue according to our rules, so |α(S)| = 1

if |S| is even and |α(S)| = 0 if |S| is odd. Hence

Eβ(x) =
∑
n≥0

x2n

(2n)!
.
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Here we are deleting all of the odd powers of x from ex. To get a nice expression,
note that this is the same as (ex + e−x)/2. (How about if we wanted to delete the
even terms instead?)

Hence we get (I leave it as an exercise to check that eA(x)eB(x) = eA(x)+B(x) for any formal
power series A,B with no constant term):

Eα·β(x) =
1

2
ex(ex + e−x) =

1

2
(e2x + 1) =

1

2

∑
n≥0

2nxn

n!
+

1

2
.

So cn = 2n−1 if n > 0 and c0 = 1.
Actually we could have derived this formula using earlier stuff: we’re just trying to pick a

subset of even size to be painted blue. We know that half of the subsets of [n] have even size
and half have odd size, so we can also see 2n−1. However, the approach given here generalizes
more easily if we introduce more colors, for example. �

We can multiply more than 2 structures at once. By iterating the case of 2 structures, we
come to the following definition and result. Let α1, . . . , αk be structures. Then their product
is

(α1 · · ·αk)(S) =
∐

(T1,...,Tk)
T1∪···∪Tk=S

Ti∩Tj=∅ for i 6= j

α1(T1)× · · · × αk(Tk)

where the disjoint union is over all ways to write S as a disjoint union of k subsets. This is
almost like an ordered set partition, except that the Ti are allowed to be empty. Then

Eα1···αk(x) = Eα1(x) · · ·Eαk(x).

Example 5.5. Continuing from the previous example, suppose we can also color some
telephone polls green and there are no restrictions on how many are green. This introduces
a third structure: let γ(S) be the ways to paint the polls green, so |γ(S)| = 1 for all S. Our
new EGF is

Eα·β·γ(x) =
1

2
ex(ex + e−x)ex =

1

2
(e3x + ex) =

1

2

(∑
n≥0

(3x)n

n!
+
∑
n≥0

xn

n!

)
,

so the answer we want is 1
2
(3n + 1). �

Example 5.6. Consider the following structure:

α(S) =

{
{1} if |S| > 0

∅ if |S| = 0
.

We can think of this as a “selection structure” which picks out nonempty subsets. In partic-
ular, (α · α)(S) is the number of nonempty subsets T ⊆ S such that S \ T is also nonempty.
In other words, it is an ordered set partition with 2 blocks. More generally, αk(S) is the set
of ordered set partitions of S with k blocks. Hence∑

n≥0

k!S(n, k)
xn

n!
= Eαk(x) = Eα(x)k = (ex − 1)k,

and also ∑
n≥0

S(n, k)
xn

n!
=

(ex − 1)k

k!
.
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By modifying the definition of α we can get formulas for set partitions with different condi-
tions on the sizes of the blocks (or even using k different modifications). �

5.2. Compositions of exponential generating functions. Now we consider a structure
α such that α(∅) = ∅. For a finite set S, let ΠS be the set of set partitions of S. We define
eα to be the following structure:

eα(S) =
∐

{S1,...,Sk}∈ΠS

α(S1)× · · · × α(Sk).

In other words, we consider all set partitions of S, and put structures of type α on each
block. There is some ambiguity about the order to take the product since the Si are not
ordered, but this choice won’t matter much since we only care about the size of eα(S). To
make this well-defined, we could pick an ordering of S and can take the convention that we
list blocks so that min(S1) < min(S2) < · · · < min(Sk).

Theorem 5.7. We have
Eeα(x) = exp(Eα(x)).

Proof. Since |α(∅)| = 0, we have [xn]Eα(x)k = 0 if k > n. So

[xn] exp(Eα(x)) = [xn]
∑
k≥0

Eα(x)k

k!
= [xn]

n∑
k=0

Eα(x)k

k!
.

From our discussion on products of EGFs, [xn]Eα(x)k is the number of ways to pick an
ordered set partition of [n] into k blocks and put structures of type α on each block; if we
divide by k! we just remove the ordering. Hence the coefficient of xn above is exactly the
size of eα([n]). �

If an EGF has the form exp(A(x)), we can try to use the “logarithmic derivative” to get
recurrence relations on its coefficients. I’ll explain the setup in a homework problem and
instead focus on examples of the above theorem.

Example 5.8. We continue with Example 5.6 and define the structure

α(S) =

{
{1} if |S| > 0

∅ if |S| = 0
.

Then |eα(S)| is the number of set partitions of S, so we get the EGF for Bell numbers:∑
n≥0

B(n)
xn

n!
= Eeα(x) = exp(Eα(x)) = exp(ex − 1). �

There is a general heuristic that if α(S) consists of the set of “connected” structures,
then eα(S) is the set of all structures (not necessarily connected) since generally speaking,
arbitrary structures are disjoint unions of connected ones. Rather than make this precise,
let’s illustrate with some examples.

Example 5.9. An undirected graph is connected if, for any two vertices x and y, there
exists a walk from x to y. For a general undirected graph G, we put an equivalence relation
on the vertices by x ∼ y if there is a walk from x to y, and the equivalence classes are
connected graphs, which are called the connected components of G. Intuitively, this is just
saying that every graph is a disjoint union of connected ones.
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For a finite set S, let β(S) be the set of all simple graphs whose vertex set is S. This is

just the set of all subsets of the 2-element subsets of S, so |β(S)| = 2d with d =
(|S|

2

)
, and

β is a structure. If |S| > 0, let α(S) be the set of all simple connected graphs whose vertex
set is S and let α(∅) = ∅. It’s harder to get a formula for |α(S)|, but it’s not hard to see it
only depends on |S|. But we can say that eα = β and exp(Eα(x)) = Eβ(x).

We might try to use this since we have a formula for |β([n])|, but the EGF doesn’t seem
to have a nice form. We can define a formal version of the logarithm function to write Eα(x)
in terms of Eβ(x), but we’ll omit this discussion. See Homework 2, Problem 8 for details
and various properties. �

Example 5.10. Let’s do something more abstract. Recall that every permutation has a cycle
decomposition. So we can think of cycles as being “connected” permutations. For S 6= ∅,
let α(S) be the set of ways to cyclically order the elements of S, so that |α(S)| = (|S| − 1)!,
and let α(∅) = ∅. Then eα(S) can be interpreted as the set of permutations of S, so that
|eα(S)| = |S|!. Hence we have

exp

(∑
n≥1

xn

n

)
= exp(Eα(x)) = Eeα(x) =

∑
n≥0

xn =
1

1− x
,

which gives us a standard identity
∑

n≥1
xn

n
= log((1− x)−1). �

Example 5.11. A bijection f : [n] → [n] is an involution if f ◦ f is the identity function.
This is just a permutation whose cycles all have length 1 or 2. So the connected involutions
are cycles of length 1 or 2. Hence let α(S) be the set of cyclic orderings of S if 1 ≤ |S| ≤ 2
and α(S) = ∅ otherwise. Then Eα(x) = x+ x2/2. Also, eα(S) can be interpreted as the set
of involutions on S. So we have

Eeα(x) = exp

(
x+

x2

2

)
. �

Finally, we can interpret general compositions as follows. Let α be a structure such that
α(∅) = ∅ and let β be a general structure. We define the composition by

(β ◦ α)(S) =
∐

{S1,...,Sk}∈ΠS

β([k])× α(S1)× · · · × α(Sk).

Again, the blocks aren’t ordered, see the discussion above on how to deal with that issue.
We can think of this as picking a set partition and putting an α structure on each block as
before, but we also additionally put a β structure on the set of blocks. The proof of the
following is pretty close to the proof of the exponential formula, so we’ll skip it.

Theorem 5.12 (Composition formula). With the notation above,

Eβ◦α(x) = Eβ(Eα(x)).

5.3. Cayley’s enumeration of labeled trees and Lagrange inversion. As discussed in
Example 5.9, a labeled (simple) graph on a set S is a collection of 2-element subsets of
S. A cycle is a closed walk which does not repeat any edges. If the graph has no cycles, it
is called a labeled forest. If, in addition, it is connected, then is a labeled tree. Let tn
be the number of labeled trees on [n]. Our goal is the following formula for tn (as discussed

before, the number of labeled graphs is 2(n2) so there isn’t much to discuss):
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Theorem 5.13 (Cayley). tn = nn−2.

There are a lot of different ways to get this, but we will focus on using EGF.

Example 5.14. When n = 1 or n = 2, we get 1 labeled tree. When n = 3, we get 3,
corresponding to the following pictures:

1 2 3 2 1 3 1 3 2

When n = 4, there are 2 types of unlabeled trees:
There are 4 labelings of the first kind since it only matters what goes in the middle, and the
second has 12 = 4!/2 labelings since a labeling can be thought of as a permutation of size 4,
except that reversing the order gives the same tree. �

We need one more definition: a rooted labeled tree is a labeled tree where one of the
points has been designated as the “root”. The number of rooted labeled trees is then ntn.
Similarly, we define a planted labeled forest to be a labeled forest in which each connected
component is a rooted labeled tree. Let fn be the number of planted labeled forests. Define
EGFs

F (x) =
∑
n≥0

fn
xn

n!
, R(x) =

∑
n≥0

ntn
xn

n!
.

Lemma 5.15. F (x) = eR(x).

Proof. Every planted labeled forest is a disjoint union of rooted labeled trees, so this follows
from the exponential formula. �

Lemma 5.16. R(x) = xF (x).

Proof. For n ≥ 1, we can construct all rooted labeled trees on [n] uniquely in the following
way. First, pick some element i to be the root. Second, put the structure of a planted labeled
forest on [n] \ {i}. Given this information, we join i to each of the roots of the trees that
make up our forest and then forget that they are roots.

Conversely, given a rooted labeled tree, if we delete the root, then we are left with a labeled
forest. Each point that was previously connected to the root is now in a separate component
(if they were still connected, then the original graph had a cycle because we could go through
the root and then through go through whatever path remains), so we can declare all of them
to be the roots of their respective components.

In conclusion, we see that R(x) is the EGF for first picking an element of [n] and then
putting a planted labeled forest on the remaining elements. Hence

n![xn]R(x) = ntn = nfn−1 = n![xn−1]F (x) = n![xn]xF (x)

for all n ≥ 1 (and the constant terms of R(x) and xF (x) are 0), and so R(x) = xF (x). �

In particular, we have the recursion

R(x) = xeR(x).
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We can try to solve this coefficient by coefficient: say that R(x) =
∑

n≥0 rnx
n and we are

trying to solve for the ri. The left hand side has no constant term, so we must have r0 = 0.
This tells us that R(x)n starts with the term xn. Expanding the equation, we get

R(x) = x(1 +R(x) +
R(x)2

2!
+ · · · ).

So if we want to solve for rn we just need to consider x(1 + R(x) + · · · + R(x)n−1

(n−1)!
) since all

other terms don’t have a xn term. In particular,

r1 = [x1]R(x) = [x1]x = 1,

r2 = [x2]R(x) = [x2]x(1 +R(x)) = 0 + r1 = 1,

r3 = [x3]R(x) = [x3]x(1 +R(x) +
R(x)2

2
) = 0 + r2 +

r0r2 + r2
1 + r2r0

2
=

3

2
,

...

We can continue like this, but it would be nice to have a closed formula without having to
guess one. This can be done with the Lagrange inversion formula (due to time constraints,
we’ll skip the proof):

Theorem 5.17 (Lagrange inversion formula). Let G(x) be a formal power series whose
constant term is nonzero. There is a unique formal power series A(x) such that A(0) = 0
and

A(x) = xG(A(x)).

For k, n ≥ 0, we have
n[xn]A(x)k = k[xn−k](G(x)n).

Remark 5.18. Showing that there exists a unique formal power series A(x) satisfying the
equation A(x) = xG(A(x)) when G(0) 6= 0 follows the example above since the coefficients
of A(x) can be determined one at a time. The real content (whose proof we’re skipping) is
the nice formula for these coefficients in terms of G(x). �

Proof of Theorem 5.13. We take A(x) = R(x) and G(x) = ex and for the moment, let’s take
k general. For n > 0, the Lagrange inversion formula tells us that

[xn]R(x)k =
k

n
[xn−k]enx =

k

n
[xn−k]

∑
d≥0

nd

d!
xd =

k

n

nn−k

(n− k)!

We’re interested in k = 1 which simplifies to nn−1/n!. Remember that [xn]R(x) = ntn/n!,
so we conclude that tn = nn−2. �

Corollary 5.19. The number of planted labeled forests on n vertices with k connected com-
ponents is (

n− 1

k − 1

)
nn−k.

Proof. Using the product formula for EGF, n![xn]R(x)k is the number of planted labeled
forests with k connected components, together with an ordering of the components, and

n!

k!
[xn]R(x)k =

n!

k!

k

n

nn−k

(n− k)!
=

(
n− 1

k − 1

)
nn−k. �
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There doesn’t seem to be a simple way to get a nice formula for the number of labeled
forests with k connected components (for k = 1 we just divide by n because we know the
size of the single component, but in general, the sizes can vary).

We’ll finish with another example of Lagrange inversion which generalizes the formula for
Catalan numbers.

Example 5.20. Recall that we discussed why Catalan numbers count the number of rooted
binary trees with n+ 1 leaves. Equivalently, this is the number of rooted binary trees with n
internal vertices. More generally, we can fix k and consider rooted k-ary trees with n internal
vertices. We’ll leave k out of the notation for simplicity, and let cn be the number of rooted
k-ary trees with n internal vertices. To build one when n > 0, we start with a single node
for our root, and then attach k rooted k-ary trees below it. This gives us the relation

cn =
∑

(i1,i2,...,ik)
i1+···+ik=n−1

ci1ci2 · · · cik for n > 0.

The sum is over all weak compositions of n− 1 with k parts. Here ij represents the number
of internal vertices that are in the jth tree connected to our original root. As before, if
C(x) =

∑
n≥0 cnx

n, this leads to the relation

C(x) = 1 + xC(x)k.

Now we don’t have a general method of solving this polynomial equation, but we can use
Lagrange inversion. We set A(x) = C(x)− 1 to convert the relation into

A(x) = x(A(x) + 1)k.

So we take G(x) = (x+ 1)k and we conclude that

[xn]A(x) =
1

n
[xn−1](x+ 1)kn =

1

n

(
kn

n− 1

)
=

1

(k − 1)n+ 1

(
kn

n

)
. �

6. Sieving methods

6.1. Möbius inversion. A partially ordered set (poset for short) is an abstraction for sys-
tems where some things can be compared and some things might not be comparable. First,
we give the formal definition. Recall that a relation R on a set S is a collection of ordered
pairs of elements. If (x, y) is in the relation, we usually just write xRy. Below, our relation
will be written as ≤ to be suggestive that it is a comparison.

Definition 6.1. Let P be a set. A relation ≤ on P is a partial ordering if it satisfies the
following 3 conditions:

(1) (Reflexive) For all x ∈ P , x ≤ x.
(2) (Transitive) If x ≤ y and y ≤ z, then x ≤ z.
(3) (Anti-symmetric) If x ≤ y and y ≤ x, then x = y.

The pair (P,≤) is a partially ordered set (poset). Given two elements x, y ∈ P , they
are comparable if either x ≤ y or y ≤ x, and otherwise they are incomparable. �

The notation x < y is always shorthand to mean that x ≤ y and x 6= y.
We will assume P is a finite set (much weaker assumptions can be made, but it won’t

benefit us immediately, so let’s keep things simple). If all pairs of elements are comparable,
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then ≤ is called a total ordering, which are perhaps more familiar to you. Most of the
examples we deal with are not total orderings.

Example 6.2. Let P = [n] and write x ≤ y if x is smaller than y in the usual sense. If we
write [n] for a poset, we will mean this one. This is a total ordering. �

Example 6.3. Let S be a set and let P be the set of all subsets of S. Given x, y ∈ P , we
define x ≤ y to mean that x is a subset of y. Then (P,≤) is a poset, called the Boolean
poset of S. When S = [n], we will use the notation Bn for P . When n ≥ 2 this is not a
total ordering. �

Example 6.4. Let P be the set of positive integers. Given x, y ∈ P , we define x ≤ y if x
divides y. Since it can be confusing, we will usually write | instead of ≤, so that the notation
is x|y. We will use the notation (Z>0, |) for this poset. Related to that, for any positive
integer n, let Dn be the set of positive integers that divide n. We put the divisibility relation
on Dn. If n is not a prime power, then this is not a total ordering. �

Example 6.5. Let P be the set of set partitions of [n]. Given two set partitions x and y, we
say that x refines y if every block of x is a subset of some block of y. For example, 12|34|5
refines 125|34. We write x ≤ y if x refines y. Then (P,≤) is a poset, which we will denote
by Πn. This is not a total ordering when n ≥ 3. �

We can draw posets using Hasse diagrams. Let (P,≤) be a poset. First, if x ≤ y and
x 6= y, then we will write x < y. We say y covers x if there does not exist an element z
such that x < z and z < y. The Hasse diagram of P is a picture with the elements of P
as nodes, and an edge drawn from x up to y whenever y covers x.

Example 6.6. Here is the Hasse diagram of B3, the poset of subsets of [3]:

{1, 2, 3}

{2, 3} {1, 3} {1, 2}

{3} {2} {1}

∅

�

We define various kinds of intervals

[x, y] = {z ∈ P | x ≤ z and z ≤ y},
[x, y) = {z ∈ P | x ≤ z and z < y},
(x, y] = {z ∈ P | x < z and z ≤ y},
(x, y) = {z ∈ P | x < z and z < y}.
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For x ≤ y, we define the Möbius function µ(x, y) recursively as follows:

µ(x, x) = 1 for all x ∈ P

µ(x, y) = −
∑
z∈[x,y)

µ(x, z) for all x < y.

This is equivalent to the more compact formula∑
z∈[x,y]

µ(x, z) = δx,y.

where δ is the Kronecker delta.

Lemma 6.7. We have ∑
z∈[x,y]

µ(z, y) = δx,y.

Proof. Define a function µ′(x, y) for x ≤ y by µ′(x, x) = 1 for all x ∈ P and µ′(x, y) =
−
∑

z∈(x,y] µ
′(z, y) for x < y. Then we have

µ(x, y) =
∑
w∈[x,y]

µ(x,w)δw,y

=
∑
w∈[x,y]

µ(x,w)
∑
z∈[w,y]

µ′(z, y)

=
∑
z∈[x,y]

µ′(z, y)
∑
w∈[x,z]

µ(x,w)

=
∑
z∈[x,y]

µ′(z, y)δx,z = µ′(x, y).

Hence µ satisfies the desired relation by definition of µ′. �

Remark 6.8. The last lemma is more transparent if we introduce the incidence algebra,
but I’ve avoided that to keep notation to a minimum. �

Example 6.9. Suppose the following is the Hasse diagram of our poset P :

g

e f

b c d

a

First, µ(a, b) = −µ(a, a) = −1 and similarly, µ(a, c) = −1 = µ(a, d). Say we want to
compute µ(a, e). Then we use the recursive formula:

µ(a, e) = −(µ(a, a) + µ(a, b) + µ(a, c)) = −(1− 1− 1) = 1.

In the same way, µ(a, f) = 1. Now to compute µ(a, g):

µ(a, g) = −(µ(a, a) + µ(a, b) + µ(a, c) + µ(a, d) + µ(a, e) + µ(a, f))

= −(1− 1− 1− 1 + 1 + 1) = 0. �
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The purpose of the Möbius function is the inversion formula and its dual form. Before
stating it, we first note that µ(x, y) is always integer-valued. Next, if a is an element in an
abelian group (whose operation is written as addition) and n is an integer, we can make
sense of na: it’s either a + · · · + a (n copies of a) if n ≥ 0, or else it is −(a + · · · + a) (−n
copies of a) if n < 0.

Theorem 6.10 (Möbius inversion formula). Let P be a poset and let f, g be functions from
P to some abelian group.

(a) We have

g(y) =
∑
x≤y

f(x) for all y ∈ P ,

if and only if

f(y) =
∑
x≤y

g(x)µ(x, y) for all y ∈ P .

(b) (Dual version) We have

g(y) =
∑
x≥y

f(x) for all y ∈ P ,

if and only if

f(y) =
∑
x≥y

µ(y, x)g(x) for all y ∈ P .

Proof. (a) Suppose the first equality holds for all y ∈ P . Then for any y ∈ P , we have∑
x≤y

g(x)µ(x, y) =
∑
x≤y

µ(x, y)
∑
z≤x

f(z) =
∑
z≤y

f(z)
∑
x∈[z,y]

µ(x, y) =
∑
z≤y

f(z)δz,y = f(y).

Now suppose the second equality holds for all y ∈ P . Then for any y ∈ P , we have∑
x≤y

f(x) =
∑
x≤y

∑
z≤x

g(z)µ(z, x) =
∑
z≤y

g(z)
∑
x∈[z,y]

µ(z, x) =
∑
z≤y

g(z)δz,y = g(y).

(b) is similar. �

6.2. Boolean poset and inclusion-exclusion. Inclusion-exclusion is a formula for the
size of a union of sets in terms of the sizes of their intersections.

Example 6.11. This is likely familiar when we have 2 or 3 sets. Let’s draw Venn diagrams
to visualize. For 3 sets we get

A B

which says

|A ∪B| = |A|+ |B| − |A ∩B|.
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For 3 sets we get

A B

C

from which we can verify the following formula:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.
To see this, the total diagram has 7 regions and we need to make sure that each region get
counted exactly once in the right side expression. For example, the elements that belong to
A and B but not C appear in A, B, A ∩B, and the coefficients are 1 + 1− 1 = 1. �

The examples above have a generalization to n sets.

Theorem 6.12 (Inclusion-Exclusion). Let A1, . . . , An be finite sets. Then

|A1 ∪ · · · ∪ An| =
n∑
j=1

(−1)j−1
∑

1≤i1<i2<···<ij≤n

|Ai1 ∩ Ai2 ∩ · · · ∩ Aij |.

Let’s interpret this as a special case of Möbius inversion on the Boolean poset. First, we
determine the Möbius function.

Lemma 6.13. If S ⊆ T are subsets of [n], then

µ(S, T ) = (−1)|T |−|S|.

Proof. For S ⊆ T , it suffices to show that

δS,T =
∑

U∈[S,T ]

(−1)|U |−|S|.

If |S| = s and |T | = t, then the number of subsets of size k in the interval [S, T ] is
(
t−s
k−s

)
, so

the latter sum becomes
t∑

k=s

(
t− s
k − s

)
(−1)k−s =

t−s∑
i=0

(
t− s
i

)
(−1)i = δs,t = δS,T . �

Proof of Inclusion-Exclusion. Set A = A1 ∪ · · · ∪ An. For a subset S ⊆ [n], define

f(S) = |{x ∈ A | x ∈ Ai if and only if i ∈ S}|,

g(S) = |{x ∈ A | x ∈ Ai if i ∈ S}| = |
⋂
i∈S

Ai|.

Note that g(∅) = |A| and f(∅) = 0. By definition,

g(T ) =
∑
S⊇T

f(S),

for all T ⊆ [n] and hence by the dual version of Möbius inversion, we have

0 = f(∅) =
∑
S⊆[n]

(−1)|S|g(S) =
∑
S⊆[n]

(−1)|S||
⋂
i∈S

Ai|.
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Subtract g(∅) and multiply by −1 to get

|A| = g(∅) =
∑
S⊆[n]
S 6=∅

(−1)|S|−1|
⋂
i∈S

Ai|,

which is a reformulation of what we wanted to prove. �

We use this to address two counting problems.
First, we can think of a permutation of [n] as the same thing as a bijection f : [n] → [n]

(given the bijection, f(i) is the position in the permutation where i is supposed to appear).
A derangement of size n is a permutation such that for all i, i does not appear in position
i. Equivalently, it is a bijection f such that f(i) 6= i for all i.

Theorem 6.14. The number of derangements of size n is
n∑
i=0

(−1)i
n!

i!
.

Proof. For a subset S ⊆ [n], define

f(S) = |{permutations σ of [n] such that σ(i) = i if and only if i ∈ S}|,
g(S) = |{permutations σ of [n] such that σ(i) = i if i ∈ S}| = (n− |S|)!.

The number of derangements is f(∅). Also, g(S) =
∑

S⊆T f(T ), so by the dual version of
inclusion-exclusion, we have

f(∅) =
∑
S⊆[n]

(−1)|S|g(S) =
∑
S⊆[n]

(−1)|S|(n− |S|)! =
n∑
i=0

(−1)i
(
n

i

)
(n− i)! =

n∑
i=0

(−1)i
n!

i!
. �

Remark 6.15. A typical way to phrase the problem of counting derangements is to ask for
the percentage of permutations that are derangements (the two quantities differ by divid-
ing/multiplying by n!). This can be thought as follows: n people put their hat in a bin and
they are distributed at random. What is the chance that no one receives their original hat?

We temporarily switch gears to calculus and use Taylor series instead of formal power
series. We have a formula for the exponential function

ex =
∞∑
i=0

xi

i!
.

This converges everywhere, so we can in particular plug in x = −1. If we only take the terms
up to i = n, then we get the number of derangements divided by n!, i.e., the percentage
of permutations that are derangements. By Taylor’s theorem, the limit of the first n terms
of the Taylor expansion of a “well-behaved” (= analytic) function like ex converges to the
function. So for n→∞, the proportion of permutations that are derangements is e−1 ≈ .368,
or roughly 36.8%, which may be surprising depending on your own intuition. Here are the
values of this truncated sum for n = 0, . . . , 10 up to 6 digits:

1, 0, .5, .333333, .375, .366667, .368056, .367857, .367882, .367879, .367879.

If you use Taylor’s theorem more carefully, you can actually prove that the number of
derangements is exactly round(n!/e) where round means take the closest integer. I’ll put the
details as an optional homework problem. �
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We can also use inclusion-exclusion to get an alternating sum formula for Stirling numbers.

Theorem 6.16. For all n ≥ k > 0,

S(n, k) =
1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in.

Proof. As we discussed before, k!S(n, k) counts the number of surjective functions f : [n]→
[k]. So we will count this quantity. For a subset S ⊆ [k], define

f(S) = |{surjective functions [n]→ S}|,
g(S) = |{functions [n]→ S}| = |S|n.

Then g(T ) =
∑

S⊆T f(S) since by definition every function to T is surjective onto its image
(which is some subset of T ). By inclusion-exclusion,

k!S(n, k) = f([k]) =
∑
S⊆[k]

(−1)k−|S|g(S) =
∑
S⊆[k]

(−1)k−|S||S|n =
k∑
i=0

(−1)k−i
(
k

i

)
in.

Now divide both sides by k!. �

Remark 6.17. We know from the generating function for S(n, k) (k fixed) that S(n, k) is
a linear combination of the powers 1n, 2n, . . . , kn. This formula tells us that the coefficient

of in is (−1)k−i

i!(k−i)! . �

6.3. Divisor poset and classical Möbius inversion. One of the original sources for
Möbius inversion is number theory. Here we pick a positive integer n and consider the poset
Dn of positive integers dividing n (with divisibility as the partial order).

Proposition 6.18. Suppose x divides y (and both divide n). Then

µ(x, y) =

{
0 if y/x is divisible by the square of a prime number

(−1)k if y/x is a product of k distinct prime numbers
.

If x = y, then it falls into the second case with k = 0.

This is the “classical” Möbius function.
In other words, if any prime divides y/x more than once, then µ(x, y) = 0. Otherwise, we

count how many different prime numbers divide y/x; µ(x, y) = 1 if that number is even and
µ(x, y) = −1 if that number is odd.

Proof. If x divides y, let µ′(x, y) be the proposed formula; we need to show that
∑

z∈[x,y] µ
′(x, z) =

δx,y.

Let y = pa11 · · · parr and x = pb11 · · · pbrr be prime factorizations. The sum can be rewritten∑
z∈[x,y]

µ′(x, z) =
∑

b1≤e1≤a1
b2≤e2≤a2

...
br≤er≤ar

µ′(x, pe11 · · · perr ) =
∑

b1≤e1≤min(b1+1,a1)
b2≤e2≤min(b2+1,a2)

...
br≤er≤min(br+1,ar)

µ′(x, pe11 · · · perr ).
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The second equality holds because if any ei ≥ bi + 2 then pe11 · · · perr /x is divisible by p2
i . The

last sum is a sum over all products of subsets of the primes Q = {pi | bi < ai}, so we get

∑
S⊆Q

µ′(x, x ·
∏
p∈S

p) =
∑
S⊆Q

(−1)|S| =

|Q|∑
k=0

(−1)k
(
|Q|
k

)
= δ0,|Q|,

and finally, |Q| = 0 if and only if y = x. �

Let’s consider an enumerative application with a number-theoretic flavor.
Let A be an alphabet of size k. We want to count the number of words of length n in A

up to cyclic symmetry. This means that two words are considered the same if one is a cyclic
shift of another. For example, for words of length 4, the following 4 words are all the same:

a1a2a3a4, a2a3a4a1, a3a4a1a2, a4a1a2a3.

We call these necklaces: the elements of A might be different beads we can put on the
necklace, but we would consider two to be the same if we can rotate one to get the other.
Naively, we might say that the number of necklaces of length n is kn/n since we have n
rotations for each necklace. However, there is a problem: the n rotations might not all be
the same. For example there are only 2 different rotations of 0101.

We have to separate necklaces into different groups based on their period: this is the
smallest d such that rotating d times gives the same thing. So for n = 4, we can have
necklaces of periods 1, 2, or 4, examples being 0000, 0101, 0001. There aren’t any of period
3: the period must divide the length (this can be translated into a group theory fact about
the order of a subgroup dividing the order of a group). Let ω(d, k) be the number of words
of period d. Hence for necklaces of length 4, we get the following formula:

ω(1, k) +
1

2
ω(2, k) +

1

4
ω(4, k).

For general n, we would have

|necklaces of length n| =
∑
d|n

1

d
ω(d, k).

We’ll see how to get a different formula once we develop group actions in the next section,
but let’s connect ω(d, k) with the classical Möbius function.

Theorem 6.19 (Witt’s formula). For any positive integer d, we have

ω(d, k) =
∑
e|d

µ(e, d)ke.

where the sum is over all positive integers e that divide d.

Proof. Let g(e) be the number of words of length d whose period divides e and let f(e) be
the number of words of length d whose period is exactly e. Note that a word that has period
dividing e is determined by its first e letters, which can be anything, so g(e) = ke.

Also, g(e) =
∑

e′|e f(e′), so by Möbius inversion, we get f(d) =
∑

e|d µ(e, d)ke. �
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Example 6.20. Let’s apply this to the case n = 4. Then we have the following formulas:

ω(1, k) = µ(1, 1)k = k

ω(2, k) = µ(1, 2)k + µ(2, 2)k2 = −k + k2

ω(4, k) = µ(1, 4)k + µ(2, 4)k2 + µ(4, 4)k4 = 0− k2 + k4.

So the number of necklaces of length 4 is k + k2−k
2

+ k4−k2
4

= (k4 + k2 + 2k)/4.
Let’s also do n = 6:

ω(3, k) = µ(1, 3)k + µ(3, 3)k3 = −k + k3

ω(6, k) = µ(1, 6)k + µ(2, 6)k2 + µ(3, 6)k3 + µ(6, 6)k6 = k − k2 − k3 + k6.

So the number of necklaces of length 6 is k + k2−k
2

+ k3−k
3

+ k6−k3−k2+k
6

= (k6 + k3 + 2k2 +
2k)/6. �

Example 6.21. For this example, i is a (complex) square root of −1. Consider the polyno-
mial xd−1. Let ωd = e2πi/d. By Euler’s formula e2πi = 1, the roots of xd−1 are the complex
numbers ωjd for j = 0, 1, . . . , d− 1. In particular, if d′ divides d, then xd

′ − 1 divides xd − 1.

The dth cyclotomic polynomial Φd(x) is the result of dividing xd−1 by all (x−ωjd) where
gcd(j, d) 6= 1. Then Φd(x) and xd

′ − 1 have no common factors when d′|d and d′ < d and we
get the formula xd − 1 =

∏
d′|d Φd′(x).

Then define f(d) = Φd(x) and g(d) = xd− 1; then f, g take values in the abelian group of
nonzero rational functions in x with the operation of multiplication. So we can use Möbius
inversion to conclude that

Φd(x) =
∏
d′|d

(xd
′ − 1)µ(d′,d).

For example,

(x− ω6)(x− ω5
6) = Φ6(x) =

(x6 − 1)(x− 1)

(x3 − 1)(x2 − 1)
= x2 − x+ 1. �

7. Group actions

7.1. Terminology. Hopefully you have seen group actions in your abstract algebra course.
We review the key definitions and facts now.

Recall that a group is a set G with an associative binary operation such that there is an
identity element and every element has an inverse, and that a subgroup is a subset H ⊆ G
which contains the identity and is closed under the binary operation. We will only deal
with finite groups, so this will be a running assumption. For the moment, we will use
concatenation to denote the binary operation.

The key example for us are permutation groups. Given a set X, the set of invertible
functions f : X → X is a group under composition, which we call SX . If X = [n], we write
Sn in place of S[n], and call it the symmetric group. In our examples, we consider subgroups
of SX where X is a finite set.

If G is a group and X is a set, then an action of G on X is a function ϕ : G ×X → X
(we write gx or g · x instead of ϕ(g, x)) such that

(1) 1 · x = x for all x ∈ X where 1 ∈ G is the identity,
(2) g · (h · x) = (gh) · x for all g, h ∈ G and x ∈ X.
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Again, we will always assume that the set X is finite.
In this way, each g ∈ G gives a function ϕg : X → X via ϕg(x) = g · x.

Proposition 7.1. g 7→ ϕg is a group homomorphism G → SX . Conversely, every group
homomorphism G→ SX is of this form.

Proof. First, ϕ1 is the identity function because of axiom (1). Second, for any x ∈ X, and
g, h ∈ G, we have ϕg(ϕh(x)) = g · (h · x) = (gh) · x = ϕgh(x) by axiom (2). So ϕgϕh = ϕgh.
In particular, this implies that ϕg is invertible with inverse ϕg−1 , so ϕg ∈ SX . Hence g 7→ ϕg
is a homomorphism.

Conversely, suppose we are given a homomorphism ψ : G → SX . For g ∈ G and x ∈ X,
define g ·x = ψ(g)(x). Since ψ(1) is the identity function, we have 1 ·x = x for all x. Second,
for g, h ∈ G, since ψ(gh) = ψ(g)ψ(h), we have (gh)·x = ψ(gh)(x) = ψ(g)(ψ(h)(x)) = g·(h·x).
Hence ψ comes from a group action. �

Hence, given an action on a set, it makes sense to ask about the number of cycles of
g, interpreted as a permutation. We denote it by cX(g) (this depends on the set and the
action).

Given x ∈ X, define the orbit of x by

G · x = {g · x | g ∈ G}.
This is the subset of X consisting of all elements which can be “reached” by multiplying x
by elements of G. Being in the same orbit is an equivalence relation, so any two distinct
orbits are disjoint.

The set of orbits is denoted X/G.
We also define the stabilizer of x by

Gx = {g ∈ G | g · x = x},
which is the subset of G of elements that act on x as the identity. This is a subgroup.

Lemma 7.2 (Orbit-stabilizer formula). We have |G|/|Gx| = |G · x|.

Proof. Let {x1, . . . , xr} be the elements of G ·x. Then there exist gi ∈ G such that xi = gi ·x
by definition. If g ∈ G, then g · x = xi for some i, and hence g−1

i g ∈ Gx. In particular,
every element of G can be written in the form gih for h ∈ Gx. This is also unique: if
gih = gjh

′ are two different ways, then g−1
j gi = h′h−1 ∈ Gx which means that g−1

j gix = x, so
xj = gj · x = gi · x = xi and so i = j. Next, h = h′ as well by multiplying gih = gih

′ on the
left by g−1

i . This means that |G| = r|Gx|. �

Example 7.3. The standard example of a group action is G = Sn and X = [n] with the
natural action σ · i = σ(i). In that case, the orbit of any element of X is all of X. The
stabilizer of i is the set of permutations σ that satisfy σ(i) = i, so there are (n − 1)! many
of them. This is consistent with the orbit-stabilizer formula. �

Example 7.4. For a more geometric example, we can consider the dihedral group D4 of
order 8 with its action on the set of vertices of a square. Again, the orbit of any vertex is the
whole set. The orbit-stabilizer formula then tells us that the stabilizer of any vertex has size
2. In fact it consists of the identity element and the reflection with respect to the diagonal
that contains that vertex.

If we label the vertices 1, 2, 3, 4 in clockwise order, then the non-trivial rotations are the
permutations (in cycle notation) (1234), (13)(24), and (1432).
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The reflection across the diagonal through 1 and 3 is (1)(3)(24) and for the diagonal
through 2 and 4, the reflection is (13)(2)(4).

There are 2 more elements, corresponding to reflection across the lines through opposite
sides. They give the permutations (12)(34) and (14)(23). �

Example 7.5. Pick n ≥ 2. Consider G = Sn and X = [n]× [n] with σ · (i, j) = (σ(i), σ(j)).
Now you can check that there are 2 orbits of pairs (i, j), one orbit consisting of pairs (i, i)
and one consisting of pairs (i, j) with i 6= j. The first orbit behaves just like the action of
Sn on [n]. For the second orbit, the stabilizer of (i, j) is the set of permutations such that
σ(i) = i and σ(j) = j, so there are (n− 2)! many of them.

Now consider a variation where X is the set of 2-element subsets of [n]. Then there is 1
orbit. This time, the stabilizer of {i, j} is the set of permutations such that σ({i, j}) = {i, j}
which happens in two cases:

• σ(i) = i and σ(j) = j, or
• σ(i) = j and σ(j) = i,

so there are 2(n− 2)! many of them. �

Example 7.6. Another important example comes when X has some kind of structure and
we take G to be the subgroup of Sn which preserves this structure. For example, if X is the
set of vertices of a simple graph Γ, then we take G to be the set of permutations such that
{i, j} is an edge if and only if {σ(i), σ(j)} is an edge for all i, j ∈ X. A quick check shows
that G is a subgroup. In this case, G is called the automorphism group of Γ, and denoted
Aut(Γ). For a specific example, think of the edges of a square as giving a simple graph. In
that case, Aut(Γ) = D4.

For another example, take G = GLn(Fq) and X = Fn
q . �

7.2. Burnside’s lemma. Let G act on X. For g ∈ G, define the set of fixed points of g
to be

Xg = {x ∈ X | g · x = x}.
Theorem 7.7 (Burnside’s lemma). The number of G-orbits on X is

|X/G| = 1

|G|
∑
g∈G

|Xg|.

Proof. Define
S = {(g, x) ∈ G×X | g · x = x}.

By definition, for given g ∈ G, we have (g, x) ∈ S if and only if x ∈ Xg, so |S| =
∑

g∈G |Xg|.
On the other hand, for given x ∈ X, we have (g, x) ∈ S if and only if g ∈ Gx, so |S| =∑

x∈X |Gx|. Hence we get

1

|G|
∑
g∈G

|Xg| = |S|
|G|

=
∑
x∈X

|Gx|
|G|

=
∑
x∈X

1

|G · x|
.

The last sum is the number of orbits: if an orbit has r elements, then each element of it
contributes 1/r to the sum, and hence the total contribution is 1 for each orbit. �

Example 7.8. Consider G = Sn and X = [n] with the standard action: σ ·x = σ(x). Then
|Xσ| is the number of cycles of size 1 of σ, so we can interpret 1

n!

∑
σ∈Sn |X

σ| as the average
number of cycles of size 1 (or average number of fixed points) of a permutation. The last
result tells us that this is the number of orbits of Sn on [n] which is 1. �
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We will consider the following situation. Let Y be a finite set and let Y X be the set of
functions X → Y . We introduce a G-action on Y X via g ·f = f ◦ϕg−1 for g ∈ G and f ∈ Y X .
This is indeed an action since ϕ1−1 is the identity function, and

g · (h · f) = (f ◦ ϕh−1) ◦ ϕg−1 = f ◦ ϕh−1g−1 = f ◦ ϕ(gh)−1 = (gh) · f.

Alternatively, for x ∈ X, we have (g · f)(x) = f(g−1 · x). We think of functions X → Y
as labelings of the elements of X by elements of Y (which we might think of as colors) and
G-orbits of Y X as equivalence classes of labelings. As before, for g ∈ G, let cX(g) denote
the number of cycles of ϕg acting on X.

Theorem 7.9. The number of G-orbits on Y X is

|Y X/G| = 1

|G|
∑
g∈G

|Y |cX(g).

Proof. Via Burnside’s lemma, it suffices to prove that |Y |cX(g) = |(Y X)g|. By definition, if
f ∈ (Y X)g, then f(g−1x) = f(x) for all x ∈ X. This translates into the condition that f is
constant on the cycles of g, i.e., |(Y X)g| is the number of functions constant on the cycles of
g. To count such functions, we can pick the values on each cycle independently, so there are
|Y |cX(g) many functions fixed by g. �

Example 7.10. We can use this to revisit the problem of counting necklaces. Consider
necklaces of length n in an alphabet of size k. In our new setup, let X = Z/n. Let also
G = Z/n and let the action be given by addition, i.e., i · j = i+ j. If the elements of X are
placed in a circle, we can think of the action of i as cyclic rotation by i places. Let Y be our
alphabet. Then a function X → Y is a word of length n, and a G-orbit represents a word
up to cyclic shift, i.e., a necklace. So necklaces are in bijection with G-orbits of Y X .

Consider the case n = 4. The elements of G are the powers of the permutation (0123)
(written in cycle notation), so more specifically they are (0123), (02)(13), (0321), (0)(1)(2)(3),
with 1, 2, 1, 4 cycles respectively. So the number of necklaces is 1

4
(k4 + k2 + 2k), agreeing

with our previous result using Möbius inversion.
For general n, we need to compute the number of cycles of (01 · · ·n−1)i for i = 0, 1, . . . , n−

1. Recall (or prove as an exercise) that the order of this element is n/ gcd(n, i) and its
cycles all have equal length (we can interpret cycles as cosets of the subgroup generated by
(01 · · ·n− 1)i), hence there are gcd(n, i) many cycles, so the answer is

1

n

n∑
i=1

kgcd(n,i). �

Example 7.11. As a variation, we might consider two necklaces the same if they are reflec-
tions of one another. Then we have the same setup, but we replace the cyclic group Z/n
with the dihedral group Dn, i.e., the symmetries of a regular n-gon. We’ll just do a single
example with n = 4. In that case, |D4| = 8 and includes the cyclic group as the subgroup of
rotations, so their cycle lengths are 1, 1, 2, 4 from before.

Thinking of 0,1,2,3 as the vertices of a square in clockwise order, we can reflect across the
diagonals to get (0)(13)(2) and (02)(1)(3) or reflect across the vertical or horizontal axis to get
(01)(23) and (03)(12). Then the number of equivalence classes is 1

8
(2k+ 3k2 + 2k3 +k4). �
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7.3. Redfield–Pólya theory. Continuing from the previous section, we may want more
detailed information: rather than ask how many colorings of X there are up to G, we can
ask how many use each color a specific number of times. To do this, it is convenient to think
of Y as a set of variables now. Then we define the weight of a function f : X → Y to be

wt(f) =
∏
x∈X

f(x).

For example, if 2 things are blue and 3 are red, the weight is B2R3.
Note that if two functions are in the same G-orbit, they necessarily have the same weight

since we are keeping the same labels, just redistributing where they go. Hence it makes sense
to define the weight of an orbit wt(G · f) to be the weight wt(f) of any element in the orbit.

Let n = |X|. Given g ∈ G, let cX,i(g) be the number of cycles of length i, so that
cX(g) =

∑n
i=1 cX,i(g). We introduce new variables t1, . . . , tn and define the cycle indicator

of G acting on X to be

ZX(G; t1, . . . , tn) =
1

|G|
∑
g∈G

t
cX,1(g)
1 · · · tcX,n(g)

n .

Theorem 7.12 (Redfield–Pólya). The sum of the weights of each orbit of Y X is given by∑
α∈Y X/G

wt(α) = ZX

(
G;
∑
y∈Y

y,
∑
y∈Y

y2, . . . ,
∑
y∈Y

yn

)
.

Before proving this, note that if we set y = 1 for each y ∈ Y , then the left side is just
the number of orbits and the right side is the sum 1

|G|
∑

g∈G |Y |cX(g), so this generalizes our

previous result. In fact, we can follow a similar strategy to prove it.

Proof. Define

S = {(g, f) ∈ G× Y X | g · f = f}
and define wt(S) =

∑
(g,f)∈S wt(f). As before, we can compute this as a sum over Y X or

over G. Summing over Y X gives

wt(S) =
∑
f∈Y X

|Gf |wt(f).

Now divide by |G| and use the orbit-stabilizer formula to get:

wt(S)

|G|
=
∑
f∈Y X

|Gf |
|G|

wt(f) =
∑
f∈Y X

wt(f)

|G · f |
=

∑
α∈Y X/G

wt(α)

where the last sum is over all orbits, and the last equality follows as before: each f contributes
wt(G · f)/|G · f | and there are |G · f | many elements in G · f , so the total contribution of
the elements in this orbit is wt(G · f).

If instead we sum over G, we get

wt(S) =
∑
g∈G

∑
f∈(Y X)g

wt(f).

Consider the inner sum. Every f ∈ (Y X)g is constant on the cycles of g, call the cycles
C1, . . . , Cr. So to specify f , we can pick a value f(Ci) for each i independently. Its weight
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is then f(C1)|C1| · · · f(Cr)
|Cr|. Hence if we sum over all choices of f , we get∑

f∈(Y X)g

wt(f) =
r∏
i=1

(
∑
y∈Y

y|Ci|) =
n∏
j=1

(
∑
y∈Y

yj)cX,j(g).

Comparing that to the definition of ZX(G; t1, . . . , tn), we see that

wt(S)

|G|
=

1

|G|
∑
g∈G

∑
f∈(Y X)g

wt(f) = ZX(G;
∑
y∈Y

y, . . . ,
∑
y∈Y

yn).

By what we’ve shown, the left hand side is also
∑

α∈Y X/G wt(α). �

Example 7.13. Consider again necklaces of length 4. Let y1, . . . , yk be variables representing
possible colors. The elements of G are (0123), (02)(13), (0321), (0)(1)(2)(3), so the cycle
indicator is

ZX(G; t1, t2, t3, t4) =
1

4
(2t4 + t22 + t41).

Doing the substitution td 7→
∑k

i=1 y
d
i , we get

1

4
(2
∑
i

y4
i + (

∑
i

y2
i )

2 + (
∑
i

yi)
4).

This is symmetric in the yi, so the only relevant coefficients are those of y4
1, y3

1y2, y2
1y

2
2, y2

1y2y3,
y1y2y3y4, which correspond to the integer partitions of size 4.

• The coefficient of y4
1 is 1, which tells us there is only 1 necklace of length 4 where all

colors are 1 (of course) and since there are k different ways to choose the subscript
1, there are k necklaces where all colors are the same.
• The coefficient of y3

1y2 is 1, which tells us there is only 1 necklace that uses 1 exactly
3 times and 2 exactly once. In general, if we want to know many use some color 3
times and a different color once, then we consider the coefficients y3

i yj over all choices
of i 6= j, of which there are k(k − 1).
• The coefficient of y2

1y
2
2 is 2, which tells us there are 2 necklaces that use 1 exactly

twice and 2 exactly twice. In general, there are
(
k
2

)
many monomials y2

i y
2
j with i 6= j,

so there are 2
(
k
2

)
necklaces that use exactly 2 colors, each used twice.

• The coefficient of y2
1y2y3 is 3, which tells us there are 3 necklaces that use 1 exactly

twice, 2 exactly once, and 3 exactly once. In general there are k
(
k−1

2

)
many monomials

y2
i yjyk with i, j, k distinct, so there are a total of 3k

(
k−1

2

)
many necklaces that use 3

different colors, one of which is used twice.
• The coefficient of y1y2y3y4 is 6, which tells us there are 6 necklaces of length 4 where

all colors are different and use 1,2,3,4. Finally, there are
(
k
4

)
many ways to choose

4 different colors, so we see that there are 6
(
k
4

)
many necklaces where all colors are

different. �

Example 7.14. Now let’s consider the case of necklaces of size 4 up to reflection, so that
G in the previous example is now the dihedral group D4. The new elements that we get are
(0)(13)(2), (0)(12)(3), (01)(23), and (03)(12), so the cycle indicator is

ZX(D4; t1, t2, t3, t4) =
1

8
(2t4 + 3t22 + 2t21t2 + t41)
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Doing the substitution td 7→
∑k

i=1 y
d
i gives

1

8
(2
∑
i

y4
i + 3(

∑
i

y2
i )

2 + 2(
∑
i

yi)
2(
∑
i

y2
i ) + (

∑
i

yi)
4).

Again let’s compute the coefficients of the different types of monomials.

• The coefficient of y4
1 is 1.

• The coefficient of y3
1y2 is 1.

• The coefficient of y2
1y

2
2 is 2.

• The coefficient of y2
1y2y3 is 2.

• The coefficient of y1y2y3y4 is 3.

We see that in all cases, the coefficient is at most the coefficient in the previous case (which
it should be, since we’re only making more things equivalent). �

There is a whole developed theory for working with multivariate polynomials which are
symmetric in their variables, known otherwise as symmetric polynomials. There isn’t enough
time to develop them adequately in this course, but you can see my notes for Math 202B if
you’re interested in seeing the basic development.

7.4. Proving congruences. In this last section, we will focus on proving congruences mod-
ulo a prime p. Recall that for any integers a, b, n, we write a ≡ b (mod n) to mean that
a − b is divisible by n. Everything will be a consequence of choosing good examples in the
following lemma.

Lemma 7.15. Let p be a prime integer. Let G be a group of order p acting on a finite set
X. Let g ∈ G be a generator of G. Then

|X| ≡ |Xg| (mod p).

Proof. From the orbit-stabilizer formula, every orbit of G on X has size dividing |G| = p,
and hence is either p or 1. Since the orbits form a set partition of X, this implies that |X| is
the same as the number of orbits of size 1 modulo p. An orbit of size 1 is an element x ∈ X
such that hx = x for all h ∈ G, but h is a power of g, so it is the same to know that gx = x.
In particular, Xg is the union of the orbits of size 1. �

Theorem 7.16 (Fermat’s little theorem). Pick a, p ∈ Z with p a prime. Then

ap ≡ a (mod p).

Proof. If a ≡ b (mod p), then ap ≡ bp (mod p), so we only have to prove this for one
representative of each congruence class, i.e., we can assume that 1 ≤ a ≤ p. Let X be the
set of functions Z/p→ [a]. So |X| = ap. Let g ∈ SX be given by (gf)(i) = f(i + 1). Then
g generates a cyclic group of order p. If gf = f , then f is a constant function, and there are
a of those, so |Xg| = a. �

Theorem 7.17 (Wilson). If p is a prime, then

(p− 1)! ≡ −1 (mod p).

Proof. Let X be the set of ways of placing the elements of Z/p around a circular table (each
element used exactly once). In particular, we consider two placements the same if they differ
by rotation. So |X| = (p − 1)!. Let g ∈ SX have the effect of adding 1 to each entry of a
placement. Then g generates a cyclic group G of order p.
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Suppose that x ∈ Xg. List the elements in clockwise order a0, . . . , ap−1 so that a0 = 0
(this is all considered up to cyclic shift). There is a unique i such that ai = 1 and 1 ≤ i ≤
p − 1. Applying g gives the sequence a0 + 1, . . . , ap−1 + 1, and the first element is ai, so
a2i = ai + 1 = 2. Iterating this, we deduce that aij = j for all j (thinking of the indices
modulo p). Since i ∈ Z/p has order p, all of the elements {i, 2i, . . . , (p − 1)i} are distinct
elements modulo p, so we see that knowing the distance i between 0 and 1 determines the
whole placement. Since there are p− 1 possibilities for this distance, |Xg| = p− 1. �

Lemma 7.18. Let p be a prime and n ≥ p. Then(
n

k

)
≡
(
n− p
k − p

)
+

(
n− p
k

)
(mod p).

Proof. Let X be the set of k-element subsets of [n]. Let σ be the permutation which
is the p-cycle (12 · · · p). Define g ∈ SX as follows: if S = {s1, . . . , sk}, then g(S) =
{σ(s1), . . . , σ(sk)}. Then g generates a cyclic group of order p. Now we describe Xg; suppose
S ∈ Xg. If S ∩ [p] = ∅, then S ∈ Xg since g does nothing to its elements. There are

(
n−p
k

)
many such subsets. Otherwise, suppose S contains some i ≤ p. If g(S) = S, then S must
also contain σ(i). Iterating that argument, it must also contain σ2(i), and actually all σk(i),
i.e., [p] ⊆ S. The number of such subsets is

(
n−p
k−p

)
since we can freely choose the k − p

elements of S \ [p] from {p+ 1, . . . , n}. �
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