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ABSTRACT OF THE DISSERTATION

The Combinatorics of the Permutation Enumeration of Wreath

Products between Cyclic and Symmetric Groups
by

Jennifer D. Wagner
Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Jeffrey Remmel, Chair

Brenti introduced a homomorphism ¢ : A — Q(«) defined on the the elemen-

tary symmetric functions by

k
efep(x)) = L2
where A is the space of homogeneous polynomials in an infinite number of variables
X = (w1,22,...) which are constant under all permutations of these variables.
He proved that the homomorphism & has the remarkable property that when it
is applied to a homogeneous symmetric function hy(X), the result is the well-
known Eulerian polynomial, which is also the generating function for the number
of descents of a permutation. In addition, if £ is applied to a power symmetric
function, the result is a generating function for another permutation statistic.
Beck and Remmel used combinatorial interpretations of the transition matrices
between bases of A to give combinatorial proofs of these and other related identities,
including ¢-analogs. In addition, they used these combinatorial methods to develop
an analog of Brenti’s permutation enumeration for B,,, the hyperoctahedral group
consisting of signed permutations.

In the dissertation we extend Brenti, Beck and Remmel’s results to wreath

x1il



products (185, between cyclic and symmetric groups, which can be considered as
groups of permutations signed with &' roots of unity.

The key steps in our extension to (85, include the following.

o We develop the representation theory of C't§5,, in an appropriate way, includ-
ing the definition of a characteristic map from the class functions on C%§5,
to a space of symmetric functions, and an extension of lambda-ring notation

to take into account the complex signs.

e We determine combinatorial interpretations of the transition matrices be-

tween bases of the appropriate space.

o We define appropriate statistics on the elements or (1§5,,. Since there are
a number of ways to define such statistics, we are forced to choose among

several possible definitions.

o We use combinatorial methods to define an analog of ¢, which when applied

to certain basis elements, gives the desired generating functions on elements

of C45§5,,.

o We give combinatorial proofs of the desired identities. The proofs include
interpretation of sums in terms of combinatorial objects, and the performance

of involutions on the objects.

x1v



Introduction

In [3], Brenti introduced a homomorphism from the symmetric functions to
polynomials of one variable over the rationals which, when applied to specific bases
of the symmetric functions, gives generating functions for statistics on elements of
Sy. This homomorphism, ¢ : A — Q[z], is defined on the elementary symmetric

functions as

(1 —a)t ‘

n!

§(en) =

Brenti used algebraic methods to prove results such as the following.

n’f(hn) —= Z $d65(0)7

ogESK

where des(o) is the number of descents of the permutation o, and

n!
- — e(o)
&) » ),

c€Sn(X)

where e(o) is the number of excedances of o and 5,()) is the conjugacy class of
S, indexed by A.

Beck and Remmel [2] gave combinatorial proofs of these and other related
results, and gave g-analogs. Beck [1] then defined a similar map on a space of
symmetric functions associated to B,, and proved similar results. It is important
to note that Beck’s results for B, and the g-analogs for both cases were possible
only through understanding the combinatorial proofs for 5,.

In this text, we first state Beck and Remmel’s results for S, and B,, then

extend their ideas to determine similar results for wreath products (85, between



cyclic and symmetric groups. In order to define the symmetric functions associated
with C%895,,, we must understand its representation theory. This is developed in
Chapter 3, and uses the notation of extended A-ring notation that is developed
in Chapter 2. The combinatorial methods used in the permutation enumeration
proofs depend on combinatorial interpretations of the transition matrices between
bases of these symmetric functions, which are developed in Chapter 4. Finally, we

develop the analog of Brenti, Beck and Remmel’s results in Chapter 5.



Chapter 1

Permutation Enumeration of 5,

and B,

In this chapter, we will review the results of Brenti [3], Beck and Remmel [1],
[2], which are the motivation for this work. We begin with some notation and
definitions, then state most of the results, giving a few proofs to demonstrate Beck

and Remmel’s methods.

1.1 Preliminaries

Here we will give some notation and definitions which we will use in this chapter.

A partition A of a positive integer n is a sequence of positive integers A =
(Mo Agy ooy A, with Ay < Ag < -oo < Ay such that Ay + Ay 4+ -+ X =n. If A
is a partition of n, we write A F n. A partition can be represented as a Ferrers’
diagram, I\, which consists of left-justified rows of squares such that the rows, from
top to bottom, have Ay, Ay, ... | A; squares, respectively. The conjugate partition
A’ is the partition whose Ferrers’ diagram is the reflection of Iy about the diagonal
that extends northeast from the lower left corner. The Ferrers’ diagrams F{; 5,2 35)
and F{y 2,235y are given in Figure 1.1.

A tableau of shape X is a filling of F, with positive integers such that each cell



Fli2235) F223s5y

Figure 1.1: The Ferrers’ diagrams Iy 3235 and F(122357 = F(1,1,2,45)

2 4 6

213 |4 21313 3158

111133 11123 12147
tableau column strict standard

Figure 1.2: A tableau, column strict tableau, and standard tableau of shape

(1,3,4).

of the diagram is filled with exactly one integer, and the integers increase weakly
left to right in rows and bottom to top in columns. A tableau is column strict if
the integers increase strictly in columns. A tableau is standard if it is a column
strict tableau filled with the integers 1,2,... ,n. Examples of tableaux, column
strict tableaux, and standard tableaux are given in Figure 1.2. If T" is a column
strict tableau of shape A, let T; ; be the integer filling of the cell in the :'" row and
the j' column. Then the weight of T', w(T), is defined by

w(T) = H T, ;.

(i,7)€F
A polynomial P(x1,x2,...,xy) is symmetric if and only if
Plao,@oyy.o sy ) = P21, 22,... ,2y) for all elements o of the symmetric group

Sn. Let A, = Ay (21, 22,... ,2n) be the set of all symmetric polynomials that are



homogeneous of degree n. Let

A=Axy,29,... ,2N) :A:@An(xl,xg,... LN ).

n>o

There are six classical bases of A,,, which are indexed by partitions of n. We define

these bases for A = (A1, Ag,..., N) F n. The monomial basis {my}rn of Ayis

given by
_ i i in
ma(21,2,... ,TN) = E TyTy Ty,
120N
(11,2250, TN ) =A
where r(i1,12,... ,2n) is a weakly increasing rearrangement of i1,43,... ,in. The

power basis {px}arn is defined by py = pa, py, - - - Py, Where

N

pe(T1,22,... ,aN) = fo
=1

The elementary basis {e} -y, is defined by ey = ey, €y, - - - €y, Where
ex(T1, 9, ... ,aN) = g T Xgy e T
1<ty <ip <o <ip <N
The homogeneous basis {hy}rrn is given by hy = hy hy, - -+ hy,, where

hi(x1,22,... ,aN8) = E T Ty T,

The Schur basis {s\}\rn is given by
s\ = Z w(T),
TeCS,

where ('S 1s the set of all column strict tableaux of shape A. Finally, the forgotten
basis { fi}arn is the dual basis of the elementary basis with respect to the Hall inner

product which is defined by declaring that
<m/\7 h#> = 5/\7%“

where 6, 1s 1 if A = g and 0 otherwise.



Let S, be the symmetric group on n elements, and let ¢ = oy05---0, be a
permutation of S, given in one-line notation (i.e. o(n) = 0,). We can then define

a number of statistics on such a permutation. If o; > 0,41, then 7 is said to be a

descent of 0. The number of descents of o is des(o) = [{i : 07 > i1 }|. If A =
(M, Ag, ..., A1) F nowe can also define the A-descents of o. We take o in one-line
notation, and break it into pieces of lengths Ay, Ay, ..., A;. We then only count the

number of descents o; > ;11 such that both ¢z and :+1 occur within the same piece,
then we denote the sum by desy (o). For example,ifc= 8 6 2 7 4 3 1 5
and A = (1,3,4), we break o into pieces [8][6 2 7][4 3 1 5]. Here, des)(c) = 3 while
des(o) = 5.

If o; > ¢, then ¢ is an excedance of o. We denote by e(o) = |[{¢ : ¢ > ¢}| the
number of excedances of . In the above example, e(o) = 3.

An inversion occurs whenever ¢ < j but o; > ¢;. The number of inversions is
denoted by inv(o) = 37, x(0: > 0;), where we use the notation x(A) = 1 if the
statement A is true, and y(A) = 0 if A is false. In the above example, inv(o) =
T4+54+14+44+24+14+040 = 20. We can also define the inversion statistic on words
other than permutations. Let R(1%1,2% ...]%) denote the rearrangements of a;
1’s, ag 2’s,..., and a; I’'s. If 25:1 a; =nand r =y, € R(1%,2%2 0 (%),
then an inversion occurs whenever ¢ < j and r; > r;. The number of inversions,
then, is sno(r) = 32, . x(ri > 1)

Let B, be the hyperoctahedral group on n elements. There are two helpful ways

of describing B,. First, one can think of it as a Coxeter group with generators

01,09,...0,_1 and 7, and relations
02»2:7'2 =1, 2=1...n—-1,
(0i0041) = 1, i=1...n—2,
oio;) =1, |i—j|>2
j
(O-iT)z = 17 t = n— 27
(o,q7)t = 1.



The generators o; are, in fact, generators of the symmetric group, with o; = (¢,1+1)
being the transposition of ¢ and ¢ + 1 written in cyclic form for ¢ = 1,2,... ,n —1.
The final generator is 7 = (—n), that is, a generator that maps n to —n. Because

of this, we can also think of B, as the group of signed permutations. That is, if

1 2 3 -+ n
o=
o1 O O3 --- (o

where o; € {+1,42,... ,+n}. As with the symmetric group, we can write elements

o€ B,,

of B, in cycle notation with cycles of the form

il i2 R Zm
€112 €203 “c  €ply
We will usually write such cycles in one-line notation:

(ﬁmil, 61i2, Ty, ﬁm—lim)-

Note that here, 77 is mapped to €112, 15 is mapped to €323, and so on; when deter-
mining where each 7 is to be sent, ignore the sign on it and only consider the sign
on the element to which it is being mapped.

In order to define the necessary statistics on elements of B,,, we must first define
an ordering and a partial ordering on the elements. Define the linear order © by

the following.
1<p2<g " <egn<g- - <g-—-nN<g- < —2<g —1. (1.1)
Define the partial order , by
l=-1<pr2=z-2<p---<pn=-—-n.

The ordering O is used because the number of inversions with respect to © cor-
responds to the length of an element of B, when considered as a Coxeter group.
Unfortunately, the inversions we are able to count here do not correspond to O,

but to the partial order , .



Now we are ready to define some widely accepted statistics on elements of
B,. For o € B,, let ¢ = c109---0, where 0; € {£1,4£2,... £ n}. Then if
0; >0 01, t 18 a B, -descent of 0. The number of B,-descents is then denoted by
desp(o) = |{t : 0, >0 0iy1}], where 0,01 = n+ 1. For A = (A1, Aoy ... . N) F on,
the number of B,, A-descents is defined in the following way. Write o € B,, in one-
line notation, then break it into pieces of lengths Ay, Ay, ..., A;. Then desp \(0)
counts only the B,-descents such that z and ¢ + 1 lie in the same segment. A B,,-
inversion of o occurs whenever ¢ < j and o; >r 0;. We then denote the number
of B,-inversions by inv(co) = Zi<j x(o; >r oj).

For o € B, let 0 = (01,09, - - 011(1))(021022 e 0'2l(2)) e (Ogy Ok O'kl(k)) be in
cycle notation. We say that a B, -descedance occurs at the j** position of the "
cycle if either 1 < j <4 < (z) and oy, >¢ 0y,,,, or j = [(i) and Oisy >0 iy - If &
is the number of cycles of o, the number of B,-descedances is denoted by

k
deg(o) = Z <|] L0y, >e 04, 1<)< I(¢)| + X(O‘il(i) >0 0'2'1)> )

=1
For our study of the g-analogs of the results, we need notation for ¢g-analogs of

the factorial, binomial coefficient, and multinomial coefficient. These are defined

by the following expressions.
Ml=1+q+¢" + - +q",

[t = [n]ln = 1[n —2]---[1],

n B [n]!
Fepky - Ky [k |![Foo]! - - [K]V
Finally, the following is a useful theorem regarding g-analogs, which is due to

Carlitz [4].



Theorem 1.1. Let 3'_ a; = n, then

Z qinv(r) — [ n ] 7

rER(191,292 ... 1%) Graz...4

where R(191,2%2, ... [1") is the set of rearrangements of a1 17s, ay 2’s, ..., and a

[’s.

1.2 ¢ Applied to Certain Bases of A

In this section we will state the results of Brenti and Beck and Remmel re-
garding the images of some symmetric function bases under the homomorphism ¢

which is defined as follows.

Definition 1.2. The homomorphism ¢ : A — Q[z] is defined on the elementary

basis of A by
(1 —a)t

n!

§(en) =

for n € {1,2,...}, and by setting £(eo) = 1.

Brenti [3] gives explicit expressions for {(h,), £(p,) and £(py ), and the leading
coefficient of £(s)). Beck and Remmel [1] [2] give combinatorial interpretations for
these expressions, then use the interpretations to find expressions for £(h)), the
coefficient of (1 — 2)"~'™)/n! in £(s)), and g-analogs, which will be discussed in

the next section.

1.2.1 A Combinatorial Interpretation of nl{(h,)

First we consider the image of the basis of homogeneous symmetric functions
under . We have the following theorem due to Brenti. The proof given is due to

Beck and Remmel.
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Figure 1.3: The (1,1,1,2)-brick tabloids of shape (2,3)

Theorem 1.3. Let £ : A — Q[z] be the ring homomorphism defined in Definition
1.2. Then

nlé(hy,) = Z g,

ogESK

Proof. The proof depends on the fact, due to Egecioglu and Remmel [7], that one

can express hy in terms of e, by

hy=Y (=17 B, e, (1.2)

ubn

where B, \ denotes the number of p-brick tabloids of shape A. To construct a
p-brick tabloid of shape A, begin with the shape A and fill it with bricks of sizes
15 (2, - - - 5 fi(y) in such a way that each brick lies in exactly one row of A. Figure
1.3 shows all three (1,1, 1,2)-brick tabloids of shape (2, 3).

We use the special case of (1.2) with A = (n) to interpret n!¢(h,). Multiplying
by n! and applying the homomorphism ¢ to both sides gives

nll(h,) = Z(_l)n_l(M)Bm(n)n!f(e“)

ubn
() .
n—I (1 — x)m
= D T [ ——
ukn =1 fhi-
= 2. ( i )Bwn)(l‘ -1y
ubn By oy vy g
=Y X () e
M'_nTeBM(n) K1y 2y ooy Y]

where B, () is the set of p-brick tabloids of shape A, and if p = (p1, pa, ..., ),
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then

( n ) B n!
By 2y v oy [ H’ILZIIMZ’

We will begin by showing that the right hand side of (1.3) is equivalent to a

sum of signed, weighted combinatorial objects. That is, for some class of objects

Ohn Y

> D ( n 7M>(1—x)”—l(u): 3" wlo). L4)

ubn TeBm(n) ,u17 ,u27 e oEOhn

where w(o) is the signed weight of the object o. Then we will define a sign-
reversing, weight-preserving involution on these objects, the fixed points of which
will express Y o zdes(o),

To define one of the objects, first select p, a partition of n, and a p-brick tabloid
of shape (n), i.e. which has one row of length n. Use the multinomial coefficient
to fill each brick of the tabloid with a decreasing sequence of integers from the set

{1,2,...,n} such that each integer appears exactly once in the tabloid. Use the

term (z —1)"~10) to assign a sign and weight to each cell ¢ of the tabloid as follows:

1, c is at the end of a brick,
w(e) = (1.5)

—1 or &, otherwise.
This takes into account the fact that there should be exactly one cell in each brick
whose weight is not determined by one of the n — [(x) terms of the form (z — 1).
The signed weight of the object, o, is then defined to be w(o) =[],
this definition of these objects, it is clear that (1.4) holds. Figure 1.4 shows an

w(c). Given

example of such an object.
We now define a sign-changing, weight-preserving involution on the objects in

O,

n

To perform the involution, begin checking from the left hand side of the
tableau for the first occurrence of one of the following conditions. When one of

these is found, perform the corresponding operation.

o If there is a decrease between the integer fillings of the last cell ¢ of one brick
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pofo s |1][s]4][6]5]2]

x -1-1x 1 x 1 -1 x 1

Figure 1.4: An example of the objects in O, .

pofoflrls]1][s[a][6]5]2 |
x 1 -1 x 1 x 1 -1 x1
I

pojofrlsuf[s]afl6]5]2]

Xx -1 -1 x 1 x 1 -1 x 1

Figure 1.5: An example of the involution on Oy, .

and that of the first cell of the next, join the two bricks together, and change
the weight of ¢ from +1 to -1.

o If there is a cell ¢ with weight -1, divide the brick after ¢ and change the
weight of ¢ from -1 to +1.

Figure 1.5 gives an example of the involution.

Since only the sign of the weight on one cell is changed, it is clear that this is

a sign-changing, weight-preserving involution. The fixed points of this involution

are the filled p-brick tableaux of shape (n) such that the following two properties

e If cis a cell at the end of a brick, w(c¢) = 1. Otherwise, w(c¢) = x.

o The fillings are such that the integers decrease within bricks and increase

between consecutive bricks.
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pofo s |1][s]4][6]5]2]

X X X x 1 x 1 x x 1

Figure 1.6: A fixed point of the involution on O, .

Figure 1.6 gives an example of a fixed point of the involution.

Consider the filling of such a u-brick tableaux as a permutation of S5,. Then
each descent of the permutation is weighted by = and every increase is weighted by
1. Moreover, there is exactly one object among the fixed points of the involution
which has a given filling. Thus its weight is des(o), and the sum over all these

objects is the generating function of S,, with respect to descents. |

1.2.2 A Combinatorial Interpretation of n!{(h))

It we consider now the image of the basis element h\, we obtain the following

result.

Theorem 1.4. Let £ : A(x) — Qx| be the homomorphism defined in Definition
1.2, and X be a partition of n. Then

n’f(h/\) = Z xdesx(cf)‘

ogESK
Proof. As in the previous proof, we begin by expressing the h) in terms of the e, ’s,

and applying the homomorphism ¢. We then manipulate it in the same way to

obtain the following expression.

nle(h) =Y Y ( " 7M>(:1;—1)”_l(“).

M"TLTEBM)\ M1y 2y ..

We again express the right hand side of this expression as a sum of signed,
weighted combinatorial objects. The objects in this set, Oy, , are p-brick tabloids

of shape A. As previously, each brick is filled in decreasing order with integers from
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1| ox |1 1| ox [ 1
—
ENENENIE] i EREE
N ST T L1

Figure 1.7: An example of the involution on Oy, .

[n], and each cell is weighted as in the previous proof. The weight of an object o

is then defined by the product .., w(c). This shows that we can write

2 2 (ﬂh--é,ﬂzw)(l‘_1)%[(#) = 2 vl

uFn TEB,, €0,

We again perform a sign-changing, weight-preserving involution, starting at the
highest leftmost cell, and proceeding across each row from top to bottom, find the
first occurance of one of the following conditions and perform the corresponding

operation.

o If there is a decrease between the integer filling of the last cell ¢ of one brick
and the first cell of the next brick, and both bricks lie in the same row, join

the two bricks together and change the weight of ¢ from +1 to —1.

o If there is a cell ewith weight —1, divide the brick after ¢ and change the
weight of ¢ from —1 to +1.

Figure 1.7 gives an example of the involution.

Again, it is clear that this is a sign-changing, weight-preserving involution. Its
fixed points are p-brick tableaux of shape A filled in such a way that the integer
fillings increase between consecutive bricks in the same row and decrease within
bricks, which are weighted so that the last cell of every brick receives weight 1 and
all other cells receive weight . However, we do not know what happens between

TOws.
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Reading across the rows from top to bottom gives a permutation. The A-
descents of the permutation, that is, the descents which occur all within the
same block when the permutation is divided into blocks of sizes A1, Ay, ..., Az, are
weighted by . All of the cells which are the last in a A-block or have an increase
in the permutation are weighted by 1. Thus the weight of the tableaux is 24 (%),
and the sum over these objects is the generating function of the permutations of

S, with respect to A-descents. [ |

1.2.3 Other Results

Here we will state without proof the other results of Brenti, Beck and Remmel
which are the result of applying the homomorphism ¢ to bases of the symmetric
functions. Their proofs are in the same spirit as the two given above. The following
theorem was originally proved by Brenti, and given a combinatorial proof by Beck

and Remmel.

Theorem 1.5. Let £ : A — Qlz] be the homomorphism defined in Definition
1.2, and X be a partition of n. Then

(= D)= S o,

and
n!
o - e(o)
Z/\f(p/\) - Z Z ”
Sn(N)
where S,(\) is the conjugacy class of S, indexed by the partition X\, and e(o) is

the number of excadences of the permutation o.

In addition, Brenti gives an expression for the leading coefficient of £(s,), and
Beck and Remmel give the coefficient of (1 — z)* in £(sy). We will not state them
here, as the definitions needed just to state them would take up too much space.

The are given with proof in [1].
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1.3 g¢-analogs for the S, Case

In this section we give Beck and Remmel’s ¢-analogs of the results stated in
the previous section. Most of the proofs of these results are similar, so we only
give the proof of the first result, stating the others without proof. We begin by
defining a g-analog of &.

Definition 1.6. The homomorphism & : A — (Q[q])[z] is defined on the elemen-
tary basis by

forn € {1,2,3,...}, and £(eo) = 1.
If we apply € to h,, the result is as follows.

Theorem 1.7. Let & be as defined in Definition 1.6. Then
[n]’g(hn) — Z xdes(cr)qinv(cr)
ogESK

where des(o) is the number of descents of the permutation o, and inv(o) is the

number of inversions of o.

Proof. As in the proof of Theorem 1.3, we begin by writing %, in terms of the e,’s.

hn — Z(—l)n_l(“)Bm(n)eu.

ubn

We then multiply both sides by [n]! and apply €.

[n] 'g(hn) = Z(_l)n_l(M)Bu,(n) [n]!¢(e,)

ubn

— Z(—l)n_l(“)Bm(n) [n]' H

ukn 1=1 ['MZ]’
n I’y
-y Y| 5y, (g
ptn TEB, (n) Hay oy eve s
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We will now interpret this as a sum of weighted combinatorial objects o € Oy, ,.
As in the proof of Theorem 1.3, we begin with single row tabloids filled with p-
bricks. We fill the bricks with the integers 1,2,... .n in the following way. Let
By, ..., By denote the bricks as they appear in order from left to right. Let b; = | B;|
for e = 1,...,0s0 by,...,b is a rearrangement of pq,...,p;. Associate ¢’s to
each cell of brick B;. For each rearrangement r € R(1%,2% ... ") we create
a permutation o(r) of n in the following way. Number the 1’s from right to left,

then the 2’s, and so on. We then find the inverse permutation a~*(r):

r =13 21331 2 133
or) =4 11 6 310 9 2 5 1 8 7
oMr) = 9 7 41 8 3 11 10 6 5 2

By the way we have constructed the permutation, we have blocks of decreasing

integers which fit into the p-bricks. Recall that by Theorem 1.1;

n — inv(r)‘
AP SR

Hi, oy . rER(101 282, 1)

By the way we constructed o(r),

inv(o(r)) = inv(e(r)) = inv(r) + (Z;) + (ZZ) ot (g’>

We then have p-brick tabloids of shape A with the cells filled with the integers
1,2,... ,n such that they decrease in bricks. We give an a-weight, w,(¢) according
to the rule (1.5). In addition, each cell also has a ¢-weight, w,(¢) of ¢ where
p; 1s the number of cells to the right of the cell ¢; containing numbers which are
lower than the integer contained in ¢;. The weight of an object o is defined by

w(o) = [[.c, wa(c)wy(c). This shows that we can write

2. 2.

ubn TERB

qzz‘ (gl)(x — l)n_l(“) = Z w(o).

[ n
Hay oo s Hi(p)

wy(n)

Figure 1.8 gives an example of these objects.
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pofo s |1][s]4][6]5]2]

xq9_q8_q6xq2 1 $q4 ql _quql 1

Figure 1.8: An example of an object in Oy, ,.

The involution on these objects is exactly the same as that in the proof of
Theorem 1.3. Note that since we do not change the fillings of the tabloids, the

g-weight does not change. As before, the z-weight changes only by sign. Thus the
des(co)

fixed points count the permutations of S,, with respect to the statistic = g,
We will now state some of Beck and Remmel’s other results regarding g-analogs.
The proofs use similar methods to those above and are not given here. Other results

may be found in [1].

Theorem 1.8. Let A be a partition of n, and let £ be the homomorphism defined
in Definition 1.6. Then

HIE(h) = 3w,

ogESK

and

() = Y- o ke~ D 1E o)

where desy(o) is the number of A-descents of o, and inv(o) is the number of

inversions of o.

1.4 The Representation Theory of B,

In order to examine the permutation enumeration of B,, we must associate
a space of symmetric functions to it and define an analog of £ on that space of
functions. Here, we review the representation theory of B, as given by Stembridge

[10] [9]. We follow the presentation of Beck [1] as a means of determining this space
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of symmetric functions. Later we will generalize the results for (85, following

Beck’s presentation.

1.4.1 Conjugacy Classes of B,

Recall that we can write the elements of B, in cycles of the form

il iz im
€112 €13 - Eply

where ¢, = £1. We will usually write them in one line notation as

(Gmil, 61i2, cee em—lim)

with 71 mapped to €174, 75 mapped to €323 and so on. For example the element

12 3 456 78 9
o =
-39 -7 6 8 2 1 5 —4

can be written in cycle notation as
o=(1,-3,-7)(2,9,—4,6)(5,8).

As a matter of convenience, we will replace the minus signs with bars over the

numbers. In this case, the above element becomes
o=(1,3,7)(2,9,4,6)(5,8).

Now consider the product of the signs in each cycle. If the product of the signs
is +1, we say that it is a positive cycle, or + cycle. If the product of the signs is
—1, we say that it is a negative cycle, or — cycle. Conjugating an arbitrary element
by one of the generators o; = (7,7 + 1) preserves the sign inventory in each cycle,
while conjugating by the generator 7 = (—n) changes the sign of two entries in
some cycle. Thus each conjugacy class must have a specified number of + and —
cycles. Let (A, p) F n denote a pair of partitions A and g such that [A| + || = n.
We then have the following proposition.
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Proposition 1.9. For some (A, p) = n, let Cy,y be the set of elements of B,
whose + cycles have lengths A1, A, ..., Ay, and whose — cycles have lengths
15 fl2y - oo s phi(uy- Then the set of conjugacy classes of B, is {C(x )} uyen. More-

over,
2!
Coml = 200+ W) 2, 2,
where if A = (191292 - . n%), we define z = 19122 .- naqlay!- - a,!l.

Our example above has two + cycles of lengths 3 and 2 and one — cycle of

length 4 so it belongs to the conjugacy class C(y ) of By where A = (3,2) and
po=(4).

1.4.2 The Characteristic Map, Inner Products and Dual
Bases

For a statement A, let y(A) be 1 if A is true and 0 if A is false. Then set

Lo = x(o € Cp,py) as the indicator function for the conjugacy class indexed by

(A, ). The set {1(\ y: (A, 1) F n} is a then basis for the class functions C'(B,,) of
the group B,. We define the characteristic map,

ch:C(B,) — é Ap(X) @ Ak (Y),

by
1

Z/\ZM

ch: 1y — A (X)pu(Y) (1.7)

where X = a1, 29,...,2N,Y = ¥1,%2,...,yny and N > n. From now on, we will
denote the space @;_, Ap(X)@A,_r(Y) by Ap,, and we will let Ap = P, 5, As,.
The characteristic map is an analog of the Frobenius characteristic, F': C(b:n) —
A, with 1, — ipA (X)), where 1, is the indicator function for the conjugacy class
of S, indexed by .

The usual inner product for any group G is given by

<ot Se= fa S (9)9 ().

geG
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In B,, then, we have

1
QLowrLen)s, = 31 2 Low(@)les(@)

cEBn
= (i) 02,00,
) cEBn
1
= M|C(A7M)|5Aya5ﬂﬁ
0000

21(/\)4'1(#)2/\2M
where 6y, = y(A = p).

We would like to define an inner product <,>. on Ag in such a way that the
above inner product is preserved under the characteristic map. We define it on the
basis {pA(X)p.(Y)} as follows.

(PO OB _ bt .
- 2U '

222, ’ ZaZg M+ W 2y 2,

Now fix some standard order of the pairs of permutations (A, i), and consider
two bases {a\a, }(urn and {b/\gu}(/\,u)l—n as the row vectors < a)@, >(\u-n and

< bA,Zﬂ > (ke We say the two bases are dual if < aya, > © < bAZM >T= 1.

From (1.8),
< pM pa(X)pﬁ(Y)> :5/\ a5uﬁ-

ZNZu ZaZ
QN +I(1) 2U(a)+1(B)
p(@)pu(Y)
ZAZu
\/ 21+ (\)Fn
is self dual.

Let Q**(X,Y, X,Y) denote the sum of the terms of degree 2n in

1 1
H (1 — l’if]‘)z (1 —

i yiyj)z '

Thus the basis

Beck [1] gives proofs of the following two theorems which give a useful characteri-

zation of duality.
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Theorem 1.10.

Z p/\(X)pu(Y) p/\(X)pM(Y) _ QZ”(X, Y, 77 ?)

Z)\Z 2%
(A u)Fn PNFUR) 20T

Theorem 1.11. Let {R\(X)R.(Y)} o uprn and {Qr(X)Q, (Y} uyrn be bases of
Ap,(X,Y). Under the inner product <,>,, these bases are dual if and only if

Z R/\(X)FM(Y)QA(Y)GM(?) = an(Xv VX, ?)

(Asu)bn

1.4.3 Lambda-Ring Notation

It is convenient to use lambda-ring notation to describe the irreducible charac-
ters of B,,. We define this notation on the power symmetric functions then extend
the definition to the other bases. Let X and Y be a alphabets of variables. The

following then define p,(X) where r is a nonnegative integer.

p(l) =1
pr(=X) = —p(X)
(X +Y) = p(X) +p(Y)

Then if A = (A1, Az, ..., Ax) b n, we define

PAX) = pag (X)pag (X) -+ - pa (X,

We then use the Murgnaham-Nakayama Rule to extend the definition to the Schur

functions.

() = 3 4 p(X),

ubn K

where Xﬁ is the irreducible character of 5, indexed by A and evaluated at the
conjugacy class indexed by u. Given this definition, it is possible to show that

pA(X) =) xpsul(X).

ubn
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Note that this definition also extends the lambda-ring notation to the elemen-
tary and homogeneous symmetric functions, since e,.(X) = s (X) and h,.(X) =
5(r), and ex(X) = ex, (X)exn, (X) -+ ex, (X) and hy(X) = =y (X) 2, (X) -+ - by, (X).

Once we have these definitions, it is possible to prove the following identities.

The proofs are given in Chapter 2.

(X +Y) =) s, (X)siu(Y),

vCA

(X =) = S (DM (X )sr(Y),

uCA

syu(—X) = (_1)”/#'5%’/#’(‘){)7
(XY) =) Ky wsu(X)s,(Y)
w,vkn

where K, ,, = Epkn LX?XZLXZa and X is the conjugate partition of A.
Zp

1.4.4 The Irreducible Characters of B,

We begin our analysis of the irreducible characters of B,, by considering the one-
dimensional characters. Let L be such a linear character. Then the characterization
of B, as Coxeter group gives us the following facts. First, c? = 1 means L(o;0;) =
L(c;)L(0;) = L(e) = 1 so L(o;) = £1 for all i. Similarly, since 72 =1, L(7) = +1.
Finally, the relation (¢;0,41)> = 1 gives us that L(c;0,410;) = L(0i410:0:41) so
L(o))L(0i11)L(0;) = L(oiy1)L(0;)L(oi41) and L(oi41) = L(o;) for all i < n — 1.
Thus B, has four linear characters, given in Table 1.1 as applied to elements of
the conjugacy class indexed by (A, ).

Application of the characteristic map to these linear characters give the follow-

ing results, written in A-ring notation.

Theorem 1.12. Let ch be the characteristic map defined in (1.7). Then

ch(1,) = ha(X + X), (1.9)
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Table 1.1: Linear characters of B, applied at C, ).

L(o;) | L(1) | character | applied at C(,

1 1 1n 1

~1 1 €, (—1)n=1)=iw)

1 —1 bn (—1)!w

-1 | -1 b€ (=1)»~1
ch(e,) = e (X + X), (1.10)
ch(6,) = hno(X + X)), (1.11)

and

ch(bne,) = en(X 4+ X). (1.12)

We prove (1.9) here. The proofs of (1.10), (1.11) and (1.12) are similar, with
the proof of (1.11) appearing also in [1].

Proof.

ch(ly) = ch| Y 1oy

(Asu)bn

= Y ch(lpg)

(Asu)bn

_ Z pA(7)pu(T)

(Asu)bn ATw
_ i( p/\(l’)> (Z M)
= Y hi(2)h_i(T)

k=0
= h (X +X)
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We now turn our attention to the other irreducible characters of B,,. Note that
if Y7 is an irreducible character of S,, we may regard it as a character of B, by
letting x7(o;) be defined as for o; € S, if 0; is a generator, and letting x7(7) = I~

be the identity. We then have the following lemmas, which are proven in [1].

Lemma 1.13. Let x” be an irreducible character of S,, and let 6 be the linear
character 6,, given in Table 1.1. Then

and
ch(6x7) = sx(X — X).
If v is a character of a subgroup H of G, let y 1% denote the character of
obtained by inducing y to (G. We then have the following characterization of the

irreducible characters.

Theorem 1.14. Let x* and x* be irreducible characters of Sy, and S,_;. Then
the irreducible characters of B, are (x* x (6x*)) T]g:xsn_k’ their characteristics are
sy (X + X)s,. (X — X), and their degrees are (Z)fAf“, where f* is the number of
standard tableaux of shape \.

The proof appears in [1]. We provide a sketch of the proof. From Lemma 1.13,
the statement about the characteristics is clear. To show irreducibility, it suffices

to show that the basis <5A(X + Y)SM(X — Y)> is self-dual. The degree is

(Asu)bn

calculated by computing the inner product <(XA X (x*0)) T]g:xsn_kv 1(1n7@)>B .

1.5 ¢ Applied to Certain Bases of Ap

In this section we introduce a homomorphism ¢g for the B,, case, an analog of
£ in the S, case. We explore the results of applying this homomorphism to certain
bases of Ap, (x,%), and find results analogous to the results for S,,. We begin by
listing the bases of Ag,,.

Both of the following sets are self-dual bases of Ag, (x,T).



26

o (pr(z)pyu (f»(/\,w_na

o <5A(X + X)s, (X —X)>(A7M)Fn.

Using Jacobi-Trudi identities and dual bases, it can be shown that the following

are also bases.

o
s s s s P P S S
2
~~
=
_'_
=
~—
]
=
~~
=
|
>
~—

1.5.1 The Homomorphism &g

We define an analog of ¢ for the B, case.

Definition 1.15. Define the homomorphism ¢ : A — @Q[z] on the elementary

basis by
— (1 —2)1 4+ 2(x — 1)1

Eplex(X + X)) = — ,

and
(plen(X — X)) = (1—=) Q_kl:;(l —2)

for n € {1,2,...}, and be setting £p(eo(X +Y)) = €p(eg(X —Y) = 1.
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This is a definition on the entire space because < e\ (X + X )e, (X — X) > (\)Fn
is a basis for Ag. It is important to note that this definition is suggested by the
combinatorial proofs in the permutation enumeration of 5,,. In fact, the homomor-
phism can be defined in a simpler form, but this definition suggests the weighting

we will use in the combinatorial proofs for the B, case.

1.5.2 Ajp -Homogeneous Symmetric Functions Under ¢z

To express hA(X—I—Y)hM(X—I—Y) in terms of ea(X—l—Y)eg(X—l—Y), we can express
each part separately. That is, we can express hy(X + X) in terms of e, (X + X),
and h,(X — X) in terms of e5(X — X). Thus we consider {g(hy(X + X)) and
¢g(h, (X — X)) separately.

If we apply the homomorphism ¢z to the basis elements h,, (X +X) and A, (X —
X)), we achieve the following theorem, due to Beck [1].

Theorem 1.16. [If ég is the homomorphism defined in Definition 1.15, then

2 nlep(ha(X + X)) = ) a®en), (1.13)
oc€By,
and
2"nlp(ha(X — X)) = (1 — )", (1.14)

where desg(o) is the number of B, -descents of o.

Proof. We begin with the proof of (1.13). Asin the S, case, we begin by expressing
ho(X + Y) in terms of the e, (X + 7)78.



28

Then apply the homomorphism and multiply by 2"n! to get

2l (ha(X + X)) = Y (=1)"72'0!B, (Ealea(X + X))

atn
(o) o o
I —a)* 4 a(z— 1)t
_ _1\yn=l(a)on 1 (
= ;( 1) 2 n-BOg,(n)g 2ai0é2'!
- > ()
abn T€By oy N 1712 F

(<)
< Tz =1 + (1 —a)™").

i=1
We will now show that the right side of this equation now corresponds to a sum of
signed weighted objects 0 € Opj,+. We begin with an a-brick tabloid of shape A.
The multinomial coefficient fills each brick with a decreasing sequence of integers
such that exactly the set {1,2,...,n} is used to fill the tabloid. Each brick is also
designated as either a regular brick or a barred brick. The weights of a cell ¢ are

defined as follows. If ¢ is in a regular brick,

c is at the end of a brick,
—1 or &, otherwise.

This accounts for the (z — 1)*~! terms. If ¢ is in a barred brick,

c is at the end of a brick,
1 or —a, otherwise.

This accounts for the z(x — 1)*~* terms. The weight of an object o is defined by

w(o) = [[.e, w(c). Thus we can write

I(e)
Z Z (Ofla o 7041(a)> H (z =D ' z(z—1""") = Z w(0).

abn T€Bq () i=1 0€O B, +
An example of these objects is given in Figure 1.9 .

We now perform an involution similar to those in the 5, case. Check from
left to right in the tableau for the leftmost occurrence of one of the following, and

perform the corresponding operation.
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no[sfeflgl2]7]1][=[7]3][11]5]

Xx -11 1 x x 1 x1 x -X X

Figure 1.9: An example of the objects in Ogp,,+.

o If there is a decrease between the integer filling of the last cell ¢ of a regular
brick and that of the first cell of an adjacent regular brick, join the bricks
together and change the weight of ¢ from 1 to —1.

o If there is a decrease between the integer filling of the last cell ¢ of a barred
brick and that of the first cell of an adjacent barred brick, join the bricks

together and change the weight of ¢ from z to —z.

o If there is a cell ¢ in a regular brick with weight —1, cut the brick after ¢ and

change the weight of ¢ from —1 to 1.

o If there is a cell ¢ in a barred brick with weight —z, cut the brick after ¢ and

change the weight of ¢ from —z to z.

This is a sign-changing, weight-preserving involution with fixed points with the

following properties.

o The integer fillings decrease within each brick, and increase between adjacent

regular bricks and between adjacent barred bricks.
o In regular bricks, the last cell has weight 1 and all other cells have weight x.

o In barred bricks, the last cell has weight = and all other cells have weight 1.

An example of such a fixed point is given in Figure 1.10 .
We now regard the sequence of integers as an element of B,, in one-line notation,
with the integers in regular bricks as regular numbers and the integers in barred

bricks as barred numbers. For the example in Figure 1.10, this is
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no[sfeflgl2]7]1][=[7]3][11]5]
X X 1 1 x x 1 1 1 X 1 X

Figure 1.10: A fixed point of the involution on Ogj,, .

Then with regard to the linear order for B, defined in (1.1), each descent is
weighted by x and each ascent is weighted by 1. Thus the weight of each fixed
point is 2%5(7) This proves (1.13).

To prove (1.14), we write h, (X — X) in terms of ¢,(X — X), apply the homo-
morphism and multiply by 2"n! to get the following.

2nlép(ha(X ~ X)) = S (~1) 2B, o pleal X — X))

akn

o~

) (1 — )t = (1 — )t

S SIS | (e

abn =1
a o« s . a
abn T€By oy N 1712 F

(@)
[T (=Dt =21 — 2.

=1

X

We again interpret this as a sum of signed, weighted objects o € Opp,—. The
objects here are similar to those in the previous case, but the weights are slightly
different. Again we have a-brick tabloids of shape (n), with the cells filled with the
integers 1,2,... ,n such that the integers decrease within each brick. Each brick
is designated as regular or barred. Here, the weight of a cell ¢ is defined by the

following. If ¢ is in a regular brick,

c is at the end of the brick

—1 or &, otherwise.



31

This accounts for the (z — 1)*~! terms. If ¢ is in a barred brick,

c is at the end of the brick

Y

—1 or &, otherwise.

This accounts for the —z(1 — 2)*~! terms. The weight of an object o is defined

by w(o) = [[.c, w(e). Then we can write

I(@)
Z Z (0417 N é,Oél(a)> H ((51? — D - (1 — :1;)%‘—1) _ Z w(o).

abtn TEBO“(”) =1 OEOBhn_

We will be able to perform two involutions on these objects. The first is similar
to that in the previous case. Traverse the tableau from left to right and find the
first occurrence of one of the following conditions, then perform the corresponding

operation.

o If there is a decrease between the integer filling of the last cell ¢ of a regular
brick and that of the first element in an adjacent regular brick, join the bricks

together and change the weight of ¢ from 1 to —1.

o If there is a decrease between the integer filling of the last cell ¢ of a barred
brick and that of the first element in an adjacent barred brick, join the bricks

together and change the weight of ¢ from —z to z.

o If there is a cell ¢ in a regular brick with weight —1, cut the brick after ¢ and

change the weight of ¢ from —1 to 1.

o If there is a cell ¢ in a barred brick with weight =, cut the brick after ¢ and

change the weight of ¢ from z to —z.

This is a sign-changing weight-preserving involution. Its fixed points have the

following properties.

o The integer fillings decrease within bricks and increase between adjacent

regular bricks and between adjacent barred bricks.



32

no[sfeflgl2]7]1][=[7]3][11]5]

xx 1l -1x x 1 -1-1-x -1 x

Figure 1.11: A fixed point of the first involution on Ogy,,—.

o In regular bricks, the last cell has weight 1 and all other cells have weight x.

o In barred bricks, the last cell has weight —z and all other cells have weight
-1.

An example of such a fixed point is given in Figure 1.11 .
We may now perform a second involution. Again, check from left to right in the
tableau for the first occurrence of one of the following and perform the appropriate

operation.

o If there is a barred brick of length more than one, separate the first cell ¢
and make it into a separate regular brick of length one, changing the weight

of ¢ from —1 to 1.

o If there is a regular brick of length more than one, separate the first cell ¢
and make it into a separate barred brick of length one, changing the weight

of the cell ¢ from z to —=.

o If there is a decrease between the integer filling of a regular brick which
consists of a single cell ¢ and that of the first cell of an adjacent barred
brick, change the brick consisting of ¢ into a barred brick, join the two bricks

together, and change the weight of ¢ from 1 to —1.

o If there is a decrease between the integer filling of a barred brick which
consists of a single cell ¢ and that of the first cell of an adjacent regular
brick, change the brick consisting of ¢ into a regular brick, join the two

bricks together, and change the weight of ¢ from —z to .
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][] [6]1][2]3]
-X

x 1 x 1 -1

)
2][5][s][1][2]5]
X ]

-X 1 -1 -x

Figure 1.12: An example of the second involution on Ogy,, —.

HIHBEIEG
-Xx X 1

x 1 1

Figure 1.13: A fixed point of the second involution on Opgy,, —.

An example of this sign-changing weight-preserving involution is given in Figure
1.12 . This involution has fixed points with all bricks of length one such that the
numbers increase between adjacent regular bricks, adjacent barred bricks, regular
bricks adjacent to barred bricks, and barred bricks adjacent to regular bricks. That
is, the numbers must be increasing throughout the tableau and there is only one
way to fill it. Barred bricks are given weight —x and regular bricks are given weight
1. Such a fixed point is shown in Figure 1.13 . Thus the only choice available is in

choosing the weight of each cell. This is counted by (1 — z)".
|

In the case where we consider h) rather than the special case h,,, we can perform
involutions similar to those mentioned previously. We then obtain the following

results. The proofs of these results can be found in [1].
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Theorem 1.17. Let A = n and let £ be defined as in Definition 1.15. Then
2”n!§B(hA(X _I_y)) — Z xdesB,A(cr)7
cEBn

and
n

2”n'fB(hA(X—I-7)) - ()\1 )\2 A[)(l — l’)n,

where desp \(0) is the number of B, A-descents of o.

1.5.3 Ap -Power Symmetric Functions Under {3

When we apply g to the power basis, we get the simple result that these count
B,,-descedances over conjugacy classes. Here we will state the result without proof.

The full proof can be found in [1].

Theorem 1.18. If A F n and &g ts the homomorphism defined in Definition 1.15,
then

2 (@) = Y ),

ZXR
UeBn(Avﬂ)
where B, (A, p) is the conjugacy class of B, indexed by the pair (A, u), and deg(o)

is the number of B, -descedances of o.

1.5.4 ¢-analogs for the B, Case

As with the S, case, we can introduce a g-analog of the homomorphism ¢g.

Definition 1.19. Define the homomorphism £ : Ap — (Q[q])[x] on the elemen-
tary basis by

_ R N (s L e e Ly
q

and
k

0 (1 =)t — 21 =) )
25 [k]!

for n € {1,2,...} and by setting Eg(eo(X +Y)) = Ez(eo( X —Y)) = 1.

EB(ek(X - Y)) =
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Application of this homomorphism to h,(X + X) and h,(X — X) gives the

following results.

Theorem 1.20. If {z is the homomorphism defined by Definition 1.19, then

2n[n]’gB(hn(X —|—7>) — Z wdesB(cr)qmuB(g)

cEBn

and
2n[n]!gB(hn(X — Y)) — Z (_x)desB(a)qmvB(g)
c€Bn

where B, = {o109 -0, 0,€ {i,1}}.

The proof of these statements uses involutions very similar to those used in the
proof of Theorems 1.13 and 1.14. The one difference is the inclusion in the weight
of a power ¢ where p; is the number of cells to the right of the cell in question
whose integer contents is lower. In the case of h,(X — X), the second involution

can not be performed.



Chapter 2

Lambda-ring Notation at Roots of
Unity

We will write the irreducible characters of C1§5),, using an extended version of
A-ring notation. In this chapter, we define this extension and prove some properties
of it. Note that this is not the standard definition, which may be found in [5]. This

definition allows particularly elegant combinatorial proofs of certain identities.

2.1 Definitions

Let X = o14a2+---+a;and Y = y1+y2+- - -4y, be formal sums of alphabets.
Define A-ring notation (in its unextended form) on the power symmetric functions

by

p(0) = 0,
pr(z) = ',
(X +Y) = p(X)+p(Y),
p(=X) = —p(X),



37

Extend this to other bases of the symmetric functions using the transition matrices

between them and the power basis.

he(X) = 3, Lpu(X); h(X) = TLY b (X);
e(X) = ¥, Ep (X eX) = [T e (X);

a(X) = X, p(X),

where Xﬁ is the irreducible character of 5, indexed by A evaluated at the conjugacy

class indexed by p. It is also possible to show that
pu(X) = Z XiSA(X)'
A

We extend the above definition to roots of unity by adding a single additional

property. If ¢ = ¢ for a positive integer k, then

pr(eX) = ep,(X).

2.2 Properties

Here we discuss properties of the extended A-ring notation. The standard
unextended A-ring notation has the following properties. These also hold in the

extended case.

Theorem 2.1.
(X +Y) = EC;SM(XMMY), (2.1)
(X =Y) = 2(—1)'”“'SM(X>8»W(Y), (2:2)
siu(=X) = le)'”“'sww(X), (2.3)
s\(XY) = ;KAWSM(X)SU(Y), (2.4)
where

i 1 ,
Kpw =D X0,
o
o

is the Kronecker coefficient.
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Hooks: 1313] [4]4] [5]5]5]

»—no.vo.v|
ot
ot
ot

[ ]u]
ot
ot
ot

Figure 2.1: The rim-hook tableaux of shape (1,4,4) and type (1,1,2,2,3).

To prove this theorem, we need the following lemma.

Lemma 2.2. If \,v Fn and a and § are partitions such that o + 3 = v, then

A
U= g™
nCA

Proof. (Sketch) Given a Ferrers’ diagram, F), of shape A, a him hook of X is
a sequence of cells, h, along the northeast boundary of F\ such that any two
consecutive cells in i share an edge, and the removal of the cells of A from F
leaves the Ferrers’ diagram of another partition. Given two partitions A and p, a

rim-hook tableau of shape A and type p is a sequence of partitions
T = (: )\(0) C )\(1) e )\(k) = )\) (25)

such that for each 1 < i < k, A — X=1 is a rim hook of size p;. Let RH(A, i)
denote the set of all rim-hook tableaux of shape A and type p. Define the sign of
a rim-hook A by

sgn(h) = (=1 ™!
where r(h) is the number of rows occupied by h. Then the sign of a rim-hook
tableau is the product of the signs of the hooks:

sgn(T) = H sgn(H).

heT

As an example, both of the rim-hook tableaux of shape (1,4,4) and type (1,1,2,2,3)

are given in Figure 2.1.
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Hooks:

2 2 2
213(415 2131515 2141515
1131315 1131314 1131313
3 3 4
3131415 3131515 3131315
1121215 1121214 1121215

Figure 2.2: The rim-hook tableaux of shape (1,4,4) and type (1,2,3) 4+ (1,2).

The proof of the lemma depends on the fact (see [7]) that if y) is the irreducible
character of 5, indexed by A evaluated at the conjugacy class indexed by v, then

n= Y sgn(T).
TERH()\v)

To see why the lemma holds, consider the example in Figure 2.1. Suppose that
instead of filling A with the hooks in the order given in the definition, we fill A in
another way. If o = (1,2,3) and 8 = (1,2), then a + 8 = p. Fill A first by hooks
of sizes 1, 2, 3, then by sizes 1,2. Figure 2.2 shows the result of this.

Classify these rim-hook tableaux by the partition, g, that is formed by the
hooks of type a. For each p, filling A the way that we did corresponds to filling p
with rim-hooks of type « and then filling A/g with rim-hooks of type 3. This gives

a product of the two characters: ngg/“. Summing over all p gives the result.

[
We are now ready to prove Theorem 2.1.

Proof. (2.1) Begin by using the definition of lambda-ring notation for the Schur

functions.
»
s\(X+Y)= ~p, (X +Y).

v
vkn
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Write v as (17,27%2,... ,n") to obtain

A
X@n,....nm .
DN e e d | LB SRTCAINE

(171 ,...,nn)

The binomial theorem gives

X ) i .
Y e I (1)

(171,...,n M) =1 r;=

Setting v; = r; + s; gives

Z N pl (X)Tl .. pn(X)Tn pl(Y)Sl . pn(Y)'Sn
X(1T1+517,,,7nrn+sn) 17’1 . nanl! . rn! 151 . nSnSI! . Sn! )
17151 ..opTnten

We now apply Lemma 2.2, with o = (1",... ,n"™) and 3 = (1**,... ,n°).

I

Z Z Z 17“1 X(lrr;“;zrln’rn) Tn!pl(X)Tl e pn(X)Tn

m=0 pbm \ (17 ,...,n"™n)

AMu

X S1,...,n%n 51 sn
. (1°1Zn5n) 151 (lnsnsll)snlpl(y) pn(Y) (26)
X/\/M
_ZZ< —pa )) (Z ) ZZ S/\/M
m=0 ukFm ozl—m Brn—m o m=0 utm

Since the Schur function sy/,(Y’) is zero if we do not have y C A, this is equal to

>y Su(X)sa/u(Y), completing the proof.

(2.2) The proof of this identity is extremely similar to the previous proof. Follow
the same steps, using —Y instead of Y. Then at (2.6) we have instead in the Y

portion
R
161,... ,nsn
? _Y 81 - _Y Sn
1 12 on) Loreemingy s !pl( ) Pn(=Y)
n—m ...,nM M
o (=1) - )X(m oo nin) s s
S Y e )
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Then since if |A| = n and || = m, Xgl/“/ = (—1)”_7”‘”(5))(2/“, this becomes

!
n—m X 1%1,...,nn 51 Sn n—m
(D7 Y e V) p() = (2D s (Y)

Putting this into the full identity gives the result.
(2.3) This is an immediate consequence of the proof of (2.2).

(2.4) We use the definition of A-ring notation for Schur functions to write

S(XY) =Y j_zppoa/) = ﬁ—:pp<X>pp<Y>-

P P

Writing the p,’s in terms of Schur functions gives

2 (S (S ) = Sawem S Lo

v

This completes the proof. [ |

We have the following corollary of Theorem 2.1.

Corollary 2.3.

ha(X4+Y) = ) b X)hnom(Y), (2.7)
ha(XY) = ) su(X)s,(Y). (2.8)

Proof. For the first identity,

(X 4+Y) = s(X+Y)
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For the second identity,

ha(XY) = sn(XY)

— ZS“(X)ZE_EZX;S”(Y)
SDITE) DETALE
= ZSM(X)SM(Y)

Some properties similar to those in Theorem 2.1 hold in the extended lambda
ring notation. We will not prove these here as the proofs are nearly identical to

those above.

Theorem 2.4. If ¢ = e2Tm, then

sy(e* X + ebY) = Z SM(EGX)S/\/M(EZ)Y),

nCA

for any integers a and b, and
(X - e€Y) = si(eX-Y)

|
= 2 g s(X)su(Y)
P

Pyths A
= D Knuws(X)s, (V) =Y Ko uusu(eX)s, (V).
m,nu Hynu

We will use a special case of the following Corollary in our determination of

the irreducible characters of (;§.5,.
Corollary 2.5. Let ¢ = €2Tm, and let ay,asq, ... ,a, be natural numbers. Then
S/\(éalX(l) 44 EakX(k)) =

> 8, (€ X D)5, 0 (€2X D) sy (2 XW),

M(l)gﬂ(2)§"'ﬂ(k_1)gA



Chapter 3

The Representation Theory of
Ck§Sn

The main goal of this text is to explore the permutation enumeration of the
wreath product (85, the group of signed permutations where there are £ signs,
Le,é®, ..., where ¢ = ¢ In order to do this, however, we must know
something of the representation theory of this group. In this chapter, we give a de-

tailed presentation of the representation theory of C§5,, including the irreducible

characters of (385, and their relationship to a space of symmetric functions.

3.1 Descriptions of ()85,

We begin by describing the group %895, in two ways. First, we can think

of it as a Coxeter-like group, defined by generators and relations. There are n

generators, o1,03,... ,0,_1, T, which satisfy the following relations:
o} = 1, i=1,2,... ,n—1,
o= 1,
(oioj)* = 1, |i—j[>1,
(ci0ip1)> = 1, i=1,2,... ,n—2,
(ro,1)* = L

43
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In fact, the generators o; are the transpositions (z,¢ + 1) which generate the sym-
metric group. The other generator is 7 = (en), that is, it maps n to € times
itself.

We can also write an element o € (895, in two line notation. For example, we

could have

1 2 3 4 5 6 7 8 9 10
o =
3 €26 7 10 b €22 el 9 28 14

) € (Us85,.

We can then write this in one-line form:
o= 3 €6 7 10 5 €2 el 9 €8 4.
We can also write the element in cyclic notation as
o= (el,3,e7)(e2,€6)(ch)(€°8,9). (3.1)

Note that when determining what a number is mapped to, one ignores the sign
on that number and then considers only the sign on the next number in the cycle.
Thus, in this example, we ignore the sign of € on the 1 and note that then 1 maps

to 3 since the sign on 3 is 1.

3.2 Conjugacy Classes of (85,

In this section we will describe the conjugacy classes of C;§S,,. To do this, con-
sider a single cycle ~. Conjugation by a generator o; does not change the structure
of the cycle or which signs occur in the cycle. Conjugation by the generator 7 does
not change the structure of the cycle and for cycles of length at least 2, changes one
sign by €*~! and one sign by ¢, thus preserving the product of the signs within the
cycle. Moreover, we can obtain any desired sign pattern by multiplying by appro-
priate products of o;s and 7s in the following way. If v = (€"4y, €*24g,... , €"mip,),

we can conjugate by an element o of S,, and the result is

all'l

o(€iy, €%y, ..., i) ! = (" o(iy), €20 (ig)s ... €0 (im)),
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thus we can change the base set to whatever we choose. We can obtain the desired
sign pattern in the following way. To increase the sign on ¢; by [, conjugate by

l. _ l . .
(€'4)) = 04,045,410+ Opo1T' Opy -+ - 04,410y, giving

(i) (€ iy, ... 9. .. € ) (7)) =

al ; a;+{ - a;41+k—1 am
(€Miq,y .. €90, . €Mt Litdy e v e s €™ ).

One can then adjust all the signs one at a time as necessary.

It the product of all of the signs in a cycle is 1, then we say the cycle is
a I-cycle. Similarly, if the product of the signs is €', the cycle is called an €i-
cycle. For example, in (3.1), (el,3,€*7) is a l-cycle, (€22, €26) and (€5) are e-cycles,
and (€28,9) is an ¢*-cycle. Thus an ¢'-cycle remains so under conjugation by any
element of C1§S,. Let (A, ... A®))  n denote a k-tuple of partitions such that
XD 4. 4 |AH®)| = n. Then by the above argument we have the following lemma.
Lemma 3.1. For some (AV, ... A®)) 0, et Com,..awy = {0 € C48S,, : the
¢'-cycles have lengths )\gi), e ,A;E)A(i)) fori=1,... k}. Then the set of conjugacy
classes of Ck§5, is {Cim,. yxoony b, x8)rn-

The example in (3.1) then belongs to the conjugacy class C((2,1),(2),3))- We can

also determine the size of each conjugacy class.

Lemma 3.2. The conjugacy class C(\o) . \owy has order

k"n!
FLOM) 4+ 1(AR))

|C(A(1),...,A<k>)| = Zy(1) Bk ‘

Proof. Suppose that for each 7, [A\()| = m;. Then we can choose the elements

for each of the cycles in ( " mk) ways. For each ¢, we choose the ¢-cycles in

e
m;!
ZA0)

signs is ¢'; the other signs are arbitrary. We choose the sign pattern for the j

ways. In each €'-cycle, one of the signs must be chosen so the product of the

. NG . .
¢-cycle in k% ' ways. Putting all of this together, the total number of elements

of Ciymy,.. amy 18

n m1! . m_k!kn—l(/\o)_..._l(/\(k)) _ L)
mq, s M ) Zx(1) N\ kl(/\(l))_|_..._|_[(/\(k))2/\(1) o
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This completes the proof. [ |

3.3 The Characteristic Map and Inner Products

Here we introduce an analog of the Frobenius Characteristic for (85, which
preserves an inner product on the class functions of C}§95,,.

Let 1\, A, defined by

L, o€ Cnm,. x»)
Loy, ay(o) =
0, otherwise,

be the indicator function on the conjugacy class C(ya) . ). Then the collection
Lo, a0y F ), A0y, Torms a basis for C(C}85,, ), the class functions on C4§S,,.

Define the characteristic map

ch : C(Cy8S,) — @ Aml(X(l)) Q@ Amk(X(k))

by
1
Lo, oy = ———————py (XM) e  py (XH), (3.2)
ZN@) T ZNR)
where X = (l’gi), x(zi), ...) is a set of variables. We will denote the space
@ Aml (X(l)) Q- ® Amk(X(k)) = AWk,n(X(l)v s 7X(k))'
my et mp=n
We denote
Aw, (X, X)) = @B Aw,, (XD, X)), (3.3)
n>0

Now we will define inner products on the class functions of C}§95, and Ay,
such that the characteristic map is preserved. The usual inner product on class

functions of a group G is

<ot Se= fa S (9)9 ().

geG
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For C}8§5,,, this becomes

1 -
(1), ) 1(M<1>,...,M<k>)>wk v Z Lo, a9 u oy (9)
7 ) geck§sn

1
= Z Lo, a0y (9)0y) ur) ==+ O3k )

1
= W|C(A(1),...,/\(k))|5/\(1),M(1) SRENOWG,

O\ 1) k) )
FAO) 4o I(AR))

AN T ENR)
where 6y, = 11if A = p or 0 otherwise.
We would like to define an inner product on Ay, so that the characteristic map

preserves the above inner product. Thus we use (3.2) to define <, >..

<pA(1)(X(1)) i (XY pa (XY ep o (X)) >

)
ZA) " AN Bud) 2

B O\ 1)+ Oxk) )
T RO A1)

>
ZA) " AN

that is,

(Pan (XD o (XD, e (XW) pan (X))

LA T ZmON) (1) O3 e
LM 4o I(AR)

This defines a scalar product on Ay, since {p\a)(XM) -+ pya (X®)) is a basis of
Aw,

P

3.4 Dual Bases

Here we discuss what it means for two bases of Ay, , to be dual with respect
to the inner product <, >, defined in the previous section. In later chapters, this
will be used to determine the irreducible characters of (;§.5,,.

Fix some standard order on k-tuples of partitions of n. Think of a basis

{aya) -+~ aym} as a row vector (aya) - - - a ) with indices ranging over all k-tuples
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(AW AR = n. From the previous section,

P (X W) pyon (XE) pon (XD) - pon (X))
: = O\ 41 Oxk) k) s

FAl1) T EA () Zu(1) (k)
kl(A(l))+m+l(>\(k)) kl(M(l))+'“+l(M(k))

which means that the basis

A (X)) - pro (XW)
RO 1 (a(F)) (D AF)

is self-dual with respect to <, >..

We now want to determine a criterion for determining if two bases are dual.
The following theorem will point the way to the general case, which follows. Let

Q7 xW® o X®W y® Y)Y denote the sum of the terms of degree 2n in

k
1
H H (1 . Xﬁi)ys(i))k'

=1 r,s

We then have the following theorem.

Theorem 3.3.

Z A (XD) e pyoy (XE) pyy (YD) - pyon (YR

EA1) A R) FAl1) EA(R)

(A, AR L)) 41 AR)y OO+ F)y

=Qx® o x® y® oy k)

Proof. We rewrite the left hand side in the following way.
3 P (X M)y (X D) pyoy (V) -y (V)
(A(l),...,A(k))l—n kl()\(l))+~~+l(>\(k)) kl(A(l))+m+l(>\(k))
kl(A(l))_|_..._|_1(A(k))

= > A (XD) - pran (X (Y - pyo (V)

(D, g AT

kl(AU))

Paco (X D)y (Y @)

-y Il

mi+-+mp=n i=1 /\(’)I—mi AL
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Now if Q27( X V(D) is the sum of the terms of degree 2m; in I1.. W

we will show that

L)

Pro (X )y (YD) = Q7 (X Oy ),

FANC
OISR

which implies the theorem. We repeatedly rewrite the product as follows.

1 1
Il TES oI (H (1- Xﬁ“n“))’“))
= k'l !
= €exp Z oqg TM
(Xy)ys(i))l
— N s )

7,8 >1
ko, (v
= exp ijz(X (YY)
>1
Syt (zlpl <>>pl<y<f>>)
a>1 ! >1

Because we only care about the terms of degree 2m;, we can write this again as

> . (Z %pl(X “))pl(Y“))> -

a=1 =1

Now take the terms of degree 2m; to obtain

Ly RO O R (e, (X, (7))
! b1 ! b,
a1 a. bl+2b2+"'+mibmi:mi 1 bl. 1 bml’
L) . .
= > — P (XD )py (Y1),
O
This completes the proof. [ |

We now generalize the previous result into a criterion for the duality of any

two bases. This is expressed in the following theorem.
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Theorem 3.4. Let {R,1)(XM)--- Ry (X®)} and {Q (X)) -+ Q (X))}
be bases of AWk’n(X(l), o XY Under the inner product <, >., these bases are
dual if and only if

Y. R (XD Ry (XI)Qun (Y1) - Qi (YY)
(D), AB) )

:an(X(1)7 7X(k)7Y(1)7 7Y(k)) (34)

Proof. Let
P Paw (X)) pyn (X))
EEORAD 7
kl()\(l))+...+l(>\(k)) (/\(1)7.“7/\(@)'_7%
R = <RA<1>(X(1)) T R/\(k)(X(k))>(/\(1),...,/\(k))l—n =p- 4,
and

QG ={Qn(XW)... Q/\(k)(X(k))>(/\(1)7m7/\(k))|_n =p-B.
The proof depends entirely on linear algebra, and not on Q%" itself. It proceeds
by showing that the bases are dual if and only if ATB = I, and then that (3.4)
holds if and only if ATB = 1.
The bases are dual if and only if

BT ©Q = [[ Ry (X)) Ry (XH), Qe (X D) o Qe (XH)) || = 1.
On the other hand,
R oG = (pA)" @ pB = AT @ pB,
and since 7' is a self-dual basis we have p’ 5= I. Thus,
R' Q= A"B.

Thus the bases are dual iff and only if ATB = ABT = 1.
Now we can write the left hand side of (3.4) as

Y. R (XD Ry (XI)Qun (Y1) - Qi (YY)
WA,
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We have from the previous theorem that p- p? = Q" which means that (3.4)
holds if and only if
pA- BT =F-p'.
This holds if and only if (AB”) o) a0, (u), w0y = 60 A0, (411 a0, that
is, if ABT = 1.
We now have that the bases are dual if and only if ATB = I which is true if
and only if (3.4) holds, which proves the theorem. [ |

We can use the criterion given in Theorem 3.4 to show that two Schur function

bases are dual. We will use this in the proof of the irreducible characters of C'§95,,.

Theorem 3.5. Let ¢ = ¢ & and let (AW OARY) extend over all k-tuples of
partitions. Then the bases

k
{(TT 0 (XD 4 R }and{Hsm “ix (M) 4. g bRy (k)

of Ay, are dual with respect to <, >,.

Proof. We proceed by showing that the the criterion in Theorem 3.4 is met in this

case. Thus we consider the following sum.

Z HS/\() i ._|_ekiX(k))S/\(i)(e(k—l)iy(l)_I____+6(k—k)iy(k))
(D, Ay =1

k
= H (Z S/\(i)(eliX(l) 4ot ekiX(k))S/\(i)(e(k—l)iy(l) 4ot e(k—k)iy(k))> )

A9
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Now apply expression (2.8) from Corollary 2.3 for

k
H (Z hal “X e ekiX(k))(e(k—l)iy(l) N 6(’ﬂ-’ﬂ)l’}/(’ﬂ))))
=1 \a;>0
k k
= H (Z P, (Z 6Pi)((p)e(fﬂ—fz)ljf(fz)))
=1 \a;>0 p,q=1
= > Hh (Z critk=a)i X(p)Y(q)>

ag,...,ax >0 =1 p,g=1

_ Z h,. (zk: zk: (6p+k—q)iX(p)y(q)>

m>0 i=1 p,q=1
where the last equality follows from expression (2.7) of Corollary 2.3, which allows
us to express a sum of products of homogeneous functions over different alphabets
as a single homogeneous function over the sum of the original alphabets. We then

the sum to obtain
k k
Z h,. (Z x(@ Z (e ) Z R, (Z kX(p)y(p)> )
m>0 p,g=1 =1 m>0 p=1

Again applying (2.7) gives

k
S [ ha (XOYO 4 x By )

al,...,akZO =1
k
= (Z ho (XMWY M 44 X(k)y(k))>

a_ (I )

p=1 r,s

The Theorem then follows immediately from this and Theorem 3.4. |

3.5 Induction Products

The following theorem will be useful in the proof of the irreducible characters

of C4585,,.
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Theorem 3.6. Lel ¢1,..., ¢ be characters of Ci8S,,,, ... ,Ck85,,, respectively,
with my +---4+mp=n. Then

ch(gr X -+ x ¢ T9935m) = ch(¢y) - ch(dy),

where ¢1 X -+ X ¢ 19585 s the character obtained by inducing the product of
characters to C1.85,.

Proof. For a character y, let x(AM), ..., A®)) be the value of the character when
evaluated on the conjugacy class of C}§S, indexed by (A, ... AR Then we

have

)\(k))p/\(l)(X(l)) e pam (X))
ORI

ch(x)= > x(,...,
WA,
k[(/\(l))+...+l(/\(k))knn!

: 1 g P (X W) - pyn (XW)
- k”n' Z kl(/\(l))+..._|_l(/\(k)) X()\( ), PN 7)\( ))

ZA) "t EAR)

W, AF))en

1 (1)) e 1 (AB)
= D EOTE A O Ay (XD -y (X )

k™n!
wECLESn

=< X5 ¥n >04880
where for w € C4§S, with cycle structure (A, ... AF)),
(My4... (k)
Yn(w) = KOO, 4 (XD o (X9),

A version of Frobenius Reciprocity holds using i,,. We prove this first, then



use it to complete the proof.

(1% - x ¢y T0k§5"7¢n>ck§s
Z dr - % 6 1955 (g (g)

960k§5n 2E€CKESn
1 1 -
- krnl Ermqt- - -my! Z ¢1 X X ¢k(y)¢n($y$_1)
S ko yECksSn
1 1
= T 2. A X X )ty
' v b €055
= T o 2o B X au)da(y)
v o
1
QT R— > b1 % -+ X Su(y)Ealy)

YECESm, XX Cy§Sm,

o4

Z Emimg!- kmkmk Z 1 % "x¢k(x_19$)¢n(9)

= (g1 X+ X Gp, n l0k§5m1X'"Xck@SMk>Ok§sm1x...x0k§5mk ’

where ), iOk§Sm1 Koo X Ok S, denotes the restriction of ¢, to C}§5,,, X

Using this, we have

Ch(¢1 X oo X ¢k Tck§sn) = <¢1 X oo X ¢k Tck§sn7¢n>ck§sn

= <¢1 Koo X ¢k’¢” lCk§s’"1><"'><Ck§s’"k >Ok§sm1><“~><0k§smk

: 1
- H (Ci§Sim,

=< 01, Vs >C488m, 0 < Ohs Vi >C455m,

Y. G0 (o)

= ch{on)

This completes the proof.
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Table 3.1: Linear characters of (%85, applied at Ca) .\

L(o;) | L(7) | character applied at Ch), )
1 1 1, 1
1 e Som (em T oI (AD))
1 1 o, (_l)n_l(/\(l))_..._l(/\(k))
1 em Un&m (_l)n_l(/\(l))_..._l(/\(k))(6m)11(A(1))+...+k1(/\(1))

Table 3.2: Images of the linear characters of (;§5, under ch.

character image
1, hn(X(l) 4t X(k))
Som hn(élmX(l) N ekmx(k))
o, en(X(l) N X(k))
T bem en (XM 4o b xR

3.6 Linear Characters of (.§5,

We can use the relations on the generators of (%85, to calculate all of the
one-dimensional characters of (/;§5,. Let L be a linear character of (4§5,. Since
o? = 1, we have L(c?) = L(1) = 1. On the other hand, L(c?) = L(0c;)? so
we must have L(o;) = £1. In addition, (6;041)> = 1 so 1 = L((6;041)%) =
L(6:)?L(0s41)* = L(0:)L(0;41). This along with the fact that o;, 0,4y = £1 gives
that L(o;) = L(0i41). Thus we have L(oy) = L(og) = --- = L(o,-1) = £1. Also,
since 78 = 1, 1 = L(1) = L(7%) = L(7)" so L(7) € {1,¢,... , "1}

Table 3.1 gives all of the linear characters of (%85, when evaluated at the
conjugacy class C\a), . \x)). Note that here, m is taken to be in {1,... &k —1}.

Consider the images of the linear characters under the characteristic map. We

have the following theorem.

Theorem 3.7. The images of the linear characters of C8S,, under the character-
istic map ch defined by (1.2) are as given in Table 3.2.

Proof. We will give proofs of the images of 1,, and é.m. The proofs of the other

two images are similar.



(Proof of ch(1,))

ch(l,) =

(Proof of ch(6.m))

ch(6em) =

ch Y Tpmam

WA,
Yo ch(lpa,. o)
WA,

Z PA (X W) ey (X B

Za() 2Nk

(A, AR n

3 3 poXM) Y 3 paw (X))

z z
ap+Fag=n \ A)q, AL AFqy A

ST b (XY b (X)) = hy (XD g X)),

a14-Fap=n

IO e I (N(R)
ch > (€)M () oy
D, A

s W) e B
) i B AR TC PR
W, AF))en

) (7O 4RO PAC) (XMW pyw (X))

D, A )en Zy\(1) 2Nk

k

> 1{ 5 eponne®

a1 +-tar=n i=1 /\(’)I—ai A

k

Z H Z Py (€™ X O)

a1 +-tar=n i=1 /\(’)I—ai A

Z ha (€ X WY py, (Fm X))
a1t Fag=n

hn(elmx(l) N eka(k))'

56
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3.7 The Images of S,-Characters Under ch

In this section we determine the images under the characteristics map of several
characters of 5, viewed as characters of (;§S5,,. We prove a number of lemmas
that will be necessary for the proof of the irreducible characters of C§5,,.

It x7 is an irreducible character of S,,, we may regard it as a character of (85,
in the following way. For the generators o;, let x7(o;) be defined in the same way

as for o; € S,. In addition, set \?(7) equal to the identity. We then have

X?Mlk...,x(k)) X( (DU-UAR)
We then have the following lemma.
Lemma 3.8. Let X be an irreducible character of S,,. Then
ch(\") = sy( XM 4 4 X3,
Proof. We have that

Pa (X)) (X))
Zy1) 2N

ch(x") = Z X’(y/\(l)u...u/\(k))
W AE) g

Now for an alphabet W, consider the sum

Pay (XD ey (X))
ZCh Z Z XZA(l)u~~~UA(k)) SW(W)'

Z cee
v v (AW, A En AL A(K)
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Recalling that > x7s,(Z) = pu(Z), we can rewrite this as

Y ch(x)s, (W)

~

P (XMWY (X))
) Z < ceeZ Z X’(y/\(l)u...u/\(k))s'y(w)
(AW, AF)n A AR "

I e G R e )

p(/\(l)umu/\(k))(W)
N T AR

(A, A(R))

= H (Z Zl, pA(i)(X(i))pMi)(W))

A9

| |
=11 - xOw, 11— xPw,

Equating coefficients of s,(W) gives the result. [

For m =1,2,... ,k, define a homomorphism A on Aw, | by
AEm . AWk,n — AWk,n?

AempT(X(i)) = pT(emiX(i)).
We then have
Asn(X) = A 30 M0, (000 = 37 X (000x09) = 5, (i),
w TH w TH

We now have the following lemma regarding the homomorphism A.m.

Lemma 3.9. Let x be a character of C}85,, and let o.m be the linear character of
Cr8S,, described in Tables 3.1 and 3.2. If f = ch(x), then Aen f = ch(demX).

Proof. By linearity, it is enough to show this for the indicator function 1) .\

By definition,

P (XMWY op o (XK
Ch(l(/\(l),...7A(k))) — £ ( ) NG ( )
ZA(1) (k)
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Thus

A (XY pyo (X))
Zy1) 2N
o (@ X W) py (P X))

ZA) "t EAR)

AEmCh(l(/\u)’m 7/\(k))) = AEm

On the other hand,

) = (em)11(A(1))+~~~+k1(x<k>)pA(l)(X(l)) ey (X))
) ZA(I) . ZA(k)
(@M X D) py (X R

ZA) " AN

Ch(56m1(/\(1),...,/\(k)

The combination of these two statements proves the lemma. [ |

We now use the results of the previous two lemmas to determine the image of

8omy® under ch.

Lemma 3.10. Let x* be an irreducible character of S, and let 6.m be the linear
character of C185, described in Tables 3.1 and 3.2. Then

ch(6emy) = SA(61~m)((1) N 6k~mx(k))'
Proof. By Lemma 3.9,
ch(8emx™) = Aemch(x?).
But Lemma 3.8 gives that
AEmCh(XA) = AEmSA(X(l) 4+ 4 X(k)).
We then have

ch(6em ) = Aemsy (X 4o 4 X

= AEm Z SM(1)(X(l))SM(2)/M(1)(X(2)) te S/\/M(k—l)(X(k))

p(D) Cp®) CeCulk—1)C N

_ 3 s, (X D)s o)) o (ETX D) sy o (F X))

(D Cp(2 Coee Culk—1 CA

— SA(61~m)((1) N ekm)((k))7

completing the proof. [ |
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3.8 The Irreducible Characters

We are now ready to characterize the irreducible characters of C485,,.

Theorem 3.11. Let 6.m be the linear character of Cp8S,, described in Tables 3.1
and 3.2. Then the irreducible characters of Ci85, are

(551X/\(1) X X 5ekX/\(k)) T0k§sn7

their characteristics are

k
HS/\(i)(GliX(l) 4oy ekiX(k))7

=1

n A A(R)
(o Y,
my,... Mg
i)

where the XA( s are irreducible characters of symmetric groups and fw) is the

and their degrees are

number of standard tableauz of shape X,

Proof. We will abuse notation by letting

Y

k

son o (X W X By = T sy (XM 4o 4 X W),
=1
and
k
son, a0 (XD, XE) =TT sy (B g g Ry (),
=1

(Characteristic) From Theorem 3.6 and Lemmas 3.8 and 3.10, it is clear that

SIG
ch(x ™M) = s 0 ooy (XD, X0,

(Irreducibility) We have that

A(1)77A(k) _ (A(1)77A(k))
X( )= Z X(a<1>,...,a(k>)1(a<1>,...,a<k>)-

(oD, ,a(F))
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Then

A A8 P (X)) - po (X)
- Z (@D, (R :

Zal1) "t Zglk)

Similarly,

ch(xOM XY = 530 oy (XD, X))

_ 0 P (X D) -y (X))
- Z (a(l),...,a(k)) P s .
(o), ) NORREENC

Thus by Theorem 3.5,

k 1 k
T ()

p=1 r,s

= Y sp ey (XD X B s 00wy (YO, Y )
(W) AR

— T
< > < > < Zoz(l) . e Zoz(k) > < Zoz(l) . Za(k)>
r X ! (D) (k) T
“\Z L)t (e )P> ‘
<Za(1) cr o Z(k) > <X> <Za(1) R Za(k)kl(a(l))+..._|_[(a(k)) > <

On the other hand,

k 1 k
T ()

p=1 r,s

P>

(oD ... k)

kl(a(l))—l—~~~+l(a(k))

Do (XD) - pn (X paoy (YD) - p o (YO

— <L> <kl(a(1))+...+l(a(k))P>T'
Za(1) "t Zo(k)

Since {py (XM - pyo (XH®)} and {50 7/\(k))(X(1), .., X)) are bases, we

have

Za(1) "t Zolk)

goos

Y T
X JR—
<X> <Zoz(1) c. Za(k)kl(o‘(l))+"'+l(a(k)) > =1 (35)
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The left hand side of (3.5) is

Z X(/\(l),...,/\(k))X(M(l),...,M(k)) 1
all),...a0) Rall),....alk)) 2oy -+ - 2y kD)4 (o)

(o)., ,a(F))

1 AW AR (D))
— eeey BTy [ )
= kg Z Xa), a0 Xa), - ay 1€, ath)|

(oD ... k)

_ kl’ Z X(/\(l)""’/\(k))(a)x(“(l)v"'7“(k))(0)
“n!

ceCr8Sy

_ <X(A<1>,...,A<k>)7 X(M(1)7...7M(k))> ‘

Thus we have
(1) (k) (1) (k)
<X(/\ ,...,/\k)7X(M 7...,uk)>ck§s :X<()‘(1)7--- 7)\(k)) _ (Iu(l)7 7;u(k))>

{X(A(l)""’A(k))} thus has the right number of orthogonal characters and is therefore

the set of irreducible characters of C}.§5,,.

(Degree) Recall that if v is a character, then y(e) gives the degree of x for the

identity element e. We have

1 1
061,017 ) 0,55, = ] > (@), pam (o) = (e

" oeCL55n

SO

x(e) = k"l (X; L@, 0.17)) ¢, g5, -
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Thus we compute this inner product for y = X(A(l)""’A(k)).

i (k)
(/\(1)7...,/\(16)) . ‘ 15 (1) o ki (k) pln(X )
<X ,1(@,...7@71n)>0k§sn = <| | So(e"' XWXV —m——=

n!
i—1

k
B <H Z Sa(i,1)(éliX(l))Sa(ig)/a(m)(éziX(z))

=1 a(i,l)ga(i,2)g,,,ga(i,k—1)g/\

. o X (F)
..Sk/auyk_l)<emx<k>>,u>

n!

K P (FXEY (X
=<H R |

i=1 (i) Cali2)CoCaliA=1 ) J=1 50) @

A( )pﬁ( ) (k)) pl"(X(k))

z
=1 glF A s

< o prm (X)) pln(X(k))>
= X1my
=1 *

*

*

m;! ’ n!

f/\(l) . f/\(k)

mq!l---mgln!

<p1n(X(k))7p1n(X(k))>*

f/\(l) . f/\(k) n'

myl - omplnt kn

We therefore have

AL ARy
SR P T AT AL n O p®
X ( ) my,... Mg f f ’

mq!l---mplnl k7

the desired value. [ |



Chapter 4

Transition Matrices Between
Bases of the ('335,-Symmaetric

Functions

In this chapter, we consider some of the bases of As,, the space of symmetric
functions associated with (385, described in the previous chapter, and determine
transition matrices between the bases.

Because of considerations of space, denote a basis {a\(X +Y + Z)b, (X + €Y +
e27Z)e, (X + €Y +¢eZ)} with (A, u,v) b n by aA?)Mél,. Likewise, we denote the basis
A (X)pu(Y)po(Z) by papup,. Then a number of the bases of As,, are given in Table
4.1.

We denote by M (aaa, b?)?)) the matrix that transforms the basis vector

Table 4.1: Some of the bases of As .

e/\éuéu h/\huhu mz\mumu f/\fufl/ Sx\guéu p/\ﬁuﬁu
Q\éuhl, Q\huéy h/\éuéy Q\huhl, h/\éuhl, h/\éuéy
m/\mufu m/\fumu f/\mumu m/\fufu f/\mufu f/\mumu

64
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< axa,a, > into the basis vector < bAEMZA)l, >. That is,
< babub, >=< ari,a, > M(adi, bbb).
Then the (o, 3,7)(\, g, v)-entry of M(aaa, b?)?)) is defined by

babuby = > aadpi, M(add, bbb)(a,5.)(r )
(a,8,7)Fn

The transition matrices between all pairs of bases of As,, that do not involve the
basis pap,p, consist of triples of transition matrices for the 5, case. Because of this
and the fact that there are 306 transition matrices, we will only consider transition
matrices involving the basis pyp,p,. We will give the following transition matrices:
M(hhh, ppp), M (ppp, hhh), M(céé, ppp), M(ppp, eéé), M(s3s, ppp), M (ppp, s33),
M (mansin, ppp), M (ppp, miwin), M(fff,ppp), and M(ppp, fff). The proofs for

the other transition matrices are similar to these.

4.1 M(hhh, ppp)

Recall that a p-brick tabloid of shape A is a tabloid in the shape of A filled
with bricks of sizes ju1, yig, ... , pty(u) such that each brick lies horizontally in a row.
The set of all p-brick tabloids of shape A is denoted by B, ». We can weight these
tabloids in the following way. The total weight is

w(B) = Y w(T).

Teb,,x

where the weight of a tabloid T is

w(T) = [ wr(®),

beT

and the weight of each brick in the tabloid is given by

|b], if bis at the end of a row;
wT(b =
1

,  otherwise.



We begin with the following expression, which may be found in [7].
pr =Y (=17 0( B, )
ubn

From this we obtain the following expressions.

pn(X) ‘|‘pn(Y) ‘|‘pn(Z) = pn(X +Y + Z) =
S (1) o BoguJha( X + Y + Z),

akn

pn(X) + epn(Y) + GQPH(Z) = pn(X + €Y + 62Z> =

D (D) w(By ) hs(X + Y + E2),
BEn

PalX) + Epu(Y) + epu(Z) = pu(X + €Y +eZ) =

S (=1 w(B, )y (X + €Y + eZ).

~yEn

If we sum (4.1) 4+ (4.2) + (4.3), we get

3pa(X) = Y (=1 w(Ba ) ha( X +Y + Z)

akn

+ Y (=17 0By ) hs(X + €Y + €2)
BEn

+ ) (=) O (B, () he (X + €Y + eZ).

~yEn

Summing (4.1) + €*(4.2) + €(4.3) gives

3p.(Y) = 3 (= 1) (B ) he( X +Y + 2)

akn

+ ) (=) O Cw( By )hs(X + €Y + €2)
BEn

+) (D) O ew (B, ()h(X + €Y + eZ).

~yEn

66

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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Figure 4.1: An illustration of A % pu * v.
Summing (4.1) + €(4.2) 4 €*(4.3) gives

3.(2) = 3 (1) w( By ) ha (X Y + 2)

akn

+ ) (=) O ew( By o)) hs(X + €Y + €2)
BEn

+) (=) O Ew(By () h (X + €Y +eZ). (4.6)
AFn
We now interpret products of the expressions (4.4), (4.5), and (4.6) combina-
torially. If A, u, and v are partitions, A * g * v is the diagram which results from
consecutively placing the lower right corner of one partition at the upper left corner
of the next. This is illustrated in Figure 4.1.
Let .7:;*’5’*1 be the set of tabloids of shape A % u * v filled with a-bricks of sizes

ai, g, ..., Qy(y), B-bricks of sizes (1, B2,... , By), and ~y-bricks of sizes

Y1,7Y25 - -+ 3 Vi(y), Such that each row contains all bricks of the same type. An exam-
ple of an element offf*’ﬁfy with A = (3,5%), u = (1,4%,6), v = (2,4), o = (1%,2%,3),

B =(1,2,3%), and v = (1°,22,3) is given in Figure 4.2.
We use (4.4), (4.5), and (4.6) to write a product of power symmetric functions



‘ ‘ [_ _ I a-brick
T T A [::J %3_brick
EI @ ~-brick

(-]
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Figure 4.2: An example of an element of .7:3*’5’*1.

in terms of a weight on elements of fi’ﬁﬂ/.

3N b (X)) p, (Y)p, (Z)

~ oA = Z Wl(f)v

hahﬁh'y fej:ayﬁﬂ

Ak kL

where Wi (f) is defined by the product over all bricks b in f

Wi(f) = [ wi(b),

bef

and where wq(b) is defined according to the following cases.

o If bis an a-brick,

|b], bis at the end of a row,
wi(b) =

—1, otherwise.

(4.7)
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o If bis a B-brick,
|b],  bis at the end of a row in A,

€?|b], bis at the end of a row in ,

wi(b) =
¢|bl, b is at the end of a row in v,
—1, otherwise.

o If bis a v-brick,

|b],  bis at the end of a row in A,
¢|b],  bis at the end of a row in g,

wl(b) =
€?|b], bis at the end of a row in v,
—1, otherwise.

It is helpful to rewrite this in terms of a more standard weight, defined by

w(f) = [Jw(®),

bef

where

|b], b is at the end of a row,

w(b) =

1,  otherwise.

Then (4.7) becomes
I p (X)p (V) (Z)
hohgh.,

— Z (_1)l(oz)-l—l(ﬁ)-l—l(w)—l(/\)—l(u)—l(u)ezlﬁ(u)-l-lﬁ(u)+l”(u)+217(u)w(f)

Y

B,
fe}—;é*;ujy

where [°(y) is the number of S-rows occurring in g, and I°(v), I"(y), and I7(v) are

defined similarly. This gives the following expression for the transition matrix.

M(hilh7 pﬁﬁ)(Oﬁﬁy’V)(Ayﬂql’)
(_1)l(a)+l(ﬁ)+l(w)—l(A)—l(M)—l(V)

= Z ) () H () STIHECIRGRC) ),
JUA) )+ v

B,
fe}—;é*;ujy
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pricle: 212] [3]3] [4]4]4]

[[2] 2] | ENEN
33| 4] 4 |4 2 [ 2 [|[ 4] 4|4
4] 4 |4
Ll 2]2]]3]3

Figure 4.3: The (1,2,2,3)-brick tabloids of shape (3,5).

4.2 M(ppp, hhh)

An ordered p-brick tabloid of shape A is similar to a u-brick tabloid of shape
Ain that it also consists of arrangements of bricks of lengths pq, pig, ... , g, into
the shape A. In the ordered case, however, the bricks are labeled, with the smaller
bricks getting the smaller labels. Then, when the bricks are placed in the tabloid,
the labels on the bricks must increase left to right in each row. The number
of ordered p-brick tabloids of shape A is denoted OB, ). As an example, the
(1,2,2,3)-brick tabloids of shape (3,5) are given in Figure 4.3.

We begin with the following expression, which is given in [7].

OB
WX +Y+7)=> ——22p, (X +Y +2)
ol
(o)
OB
=Y ] (0o (X) + po, (V) + po (7))

TRV S

If we let [n] = {1,2,... ,n}, and let S+ T be the union of two disjoint sets S and
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T', we can rewrite the above expression as

> OB >, (Hpm(X)) (Hp@(Y)) (Hp@(Z)). (4.8)

o P s4T+U=[(e)] \ies T ieU

If ¢ = 1m™12m2...pmn o = ]M1292...pan 3= [519b2 .. pbe and v = 19122 ... pon

such that 0 < a;,b;,¢; and a; 4+ b; + ¢; = m;, then we write a + 4+~ = ¢. The

¢
a8y

Y

number of ways «, 3, and 4 can be rearranged to form the partition ¢ is C

By ay, bl, &] g, bg, Co Gy, bn, Cp,

We use this to rewrite (4.8) as

where

OB(b’/\

WX +Y +2)=3 = 0 Ol pa(X)ps(Y)py(2).
Al TP atftr=s

Thus
(X +Y + Z) _ OBayppan ﬁ (ai—l—bi—l—@)
paboby  Fetstr i\ Gbic
= OBatiotan H prtbitei(a; + b, + ;) ailble! - ZaZ By OBasp (49)
=1

Similar arguments give the following expressions:

hu(X + €Y +22) l(¥)+2U(r)
g - A = 70B¢+¢+mm (4'10)
PéPyPr A,
ho(X +¢eY + 27 21(0)+1(w)
( ) . - 70B6+€+w7y- (411)
PsPoPw “ER9%w
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Combining (4.9), (4.10), and (4.11) gives

hh OBot gy
hah hl/ = TaTRTA D A
Ay Z 2022y PaPpP~
(a,8,7)FA|
()+2m) O B
¢ P+, ~ A
<D “ o Py Pr
Z(bZd,Z7T
(.0, |l
200)+U«) O B
¢ §+0+w,v JN
X Z Ps Do P
Z§R0%w
(6,0,w)F|v|
- Z el(w)-l—zl(r)-l—zl(e)-l—l(wOBoz-I-ﬁ-I-%/\OB(b-I-ll/-I-mMOBS-I—@-I-W,V
(a,B8.7)FIA ZaZBRyEeZpEr 5207w
(0,m)k |l
(67€7W)'_|l/

X Dot s P40 Dyrtow -

We then have the transition matrix

~ A

o hahoh,
M (ppp, hhb) )iy = .
PnDPrPp
= > OO Bt 4y OBy i O Bsyoro
RaRBRyR Ry RrR§20%w ’

(6,6,w)v]
a+o+bé=n
B+y+o=T
Y+ tw=p

4.3 M(eée, ppp)

The transition matrix M (eéé, ppp) is very similar to M(h];iz,pﬁﬁ) The differ-
.7'—;’5’7. Again, we begin with an

ence comes in the weight attached to elements of F\ °)

expression from [7].
P = (=1 (B, )e,.

I



This gives the expressions

pn(X) ‘|‘pn(Y) ‘|‘pn(Z) = pn(X +Y + Z) =
> (1) w(B, ()eal X +Y + Z),

akn

pn(X) + epn(Y) + GQPH(Z) = pn(X + €Y + 62Z> =

D ()" DBy )es(X + e +E7),
BEn

Pa(X) + Epa(Y) + epu(Z) = pu(X + Y +Z) =

D (1) w(B, (y)er(X + €Y + eZ).

~yEn

If we sum (4.12) 4+ (4.13) + (4.14), we get

3p.(X) = Z(—l)”-’<a>w<Ba,<n>>ea<X 1Y +2)

akn

+) (-1 B m))es(X + ¥ + 7)
BEn

+ Z(—l)”_l(W)w(B%(n))ew(X + €Y + 7).

~yEn

Summing (4.12) + €2(4.13) + €(4.14) gives

3pa(Y) = Z(—l)”_l(“)W(Bamn))@a(X +Y +7)

akn

—I—Z A 2w Bﬁ( ))eg(X—l—eY—l—ezZ)
BEn

+) ()" O ew( B, ())es (X + €Y + €Z).

~yEn
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(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Summing (4.12) + €(4.13) + €*(4.14) gives

3pa(2) = Z(—l)”_’(“)W(Bamn))ea(X +Y +7)

akn

—I—Z A ew Bﬁ( ))eg(X—l—eY—l—ezZ)
BEn

+ ) (1) Ew(B, oy ey (X + Y+ eZ). (4.17)
~yEn

We again use weights on elements of FA*ﬁ*’L to interpret products of (4.15),

(4.16), and (4.17). Here, if (X, g, v) I n, we have

I+ +H(v )pApMpu

— () Y W), (1.18)

a, 3,y
fe}—)\*M*V

eaégéw
where W5 (f) is the product over all bricks b in f

Wa(f) = J] wa(b)

bef

and where ws(b) is defined by the following cases.

o If bis an a-brick,

—1b|, bis at the end of a row,

ws(b) =
—1, otherwise.
o If bis a B-brick,
—|b|,  bis at the end of a row in A,
—e2[b], b is at the end of a row in g,
ws(b) =

—¢|b|,  bis at the end of a row in v,

otherwise.
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o If bis a v-brick,

—|b|,  bis at the end of a row in A,
—¢|b|,  bis at the end of a row in p,

—e2[b], b is at the end of a row in v,

-1, otherwise.

We write this weight in terms of the standard weight to rewrite (4.18) as

SI(A)"'I(“)"'I(”)pAﬁMﬁU

eaégéw a
(—1)" Z (= 1) HEHO) 2EWHE O+ 20 0) £y - (4.19)

B,
fe}—;é*;ujy

Thus we have the transition matrix
o (_1)n—l(a)—l(ﬁ)—l(v)62”3(M)+”3(V)-I-l”(u)-l-?”(lf)
M(eeevppp)(ozﬁﬁ)(/\,u,u) = z:ﬁ U H(w)+() w(f)
feFy

* kY

4.4 M (ppp,ecé)

The transition matrix M (ppp, eéé) is very similar to M (ppp, h]NﬂAz) The only
difference is in the powers of —1. We start with the expression
OBy
e\ — _ )=o) oA
= (=) v P
S|
which can be found in [7]. The argument is exactly the same as before, with the

slight change of sign. This gives the following expressions.
ex(X +Y + 72 —1)M=ie)=B) =)

( ) L. (=1) OByt (4.20)

PaPpDy Farfcy

X+ eV + 27 — 1) Il @)= Uw) =1 (1) +2U(m)
eu( + €Y + € ) :( ) ¢ OB¢+¢+7T,M (4'21)

PPy Pr 2oz n
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y X_|_ 2Y_|_ 7 -1 [v|=1(8)—=1(6)—l(w) (21(8)+1(w))
(X + Y +eZ) _ =D ‘ OBsiosun. (4.22)

PsDoPw 252020

If we combine the expressions (4.20), (4.21), and (4.22), and simplify them as in

the previous case, we get the following transition matrix.

M (ppp, €€€)(y.r,0) (A ) =
Z (_1)n_l(a)_l(g)_1(7)_l(¢)—l(w)—l(r)—l(é)—l(é’)—l(w)61(¢)+21(7T)+21(9)+1(W)

(a,B87)FA
(&:9,m)F|p|
(6,0,w)Fv|
a+d+é=n
B+i+b6=7
y+rtw=p

RaRBRyRpRYRTRE§20%w

X OBay g1y 2 OBgryir nOBsiotw

4.5 M(sss,ppp) and M (ppp, s55)

We use the properties of dual bases and scalar products described in our study
of the representation theory of C5§95, to determine M (s33, ppp). Begin by writing

the element of the transition matrix as the scalar product below.

M(Sgéypﬁﬁ)(a,ﬁ,’y)(/\,ml/) — <p/\ﬁﬂﬁy7 Sagﬁé,y>* = <1/\7M7UZ/\ZMZU7 X(a’ﬁﬂ/)>cg§sn .

Recall that y(®%") is the irreducible character of C5§5, indexed by (a, 3,7). This

scalar product is then equal to

M(S§§7 pﬁﬁ)(a,ﬁ,’y)(A,u,u)

1 _
- 3! Z 1/\%1/(U)Z/\ZMZUX(aﬁw)(U)
" oecass
1

OZ,B,
= 5 Crunlmrzuzx(0) ()
1 3"n!
= 3np) 31(/\)'”(“)-”(”)2/\2“21,

2z (07 (o)
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We use the fact that s,5,5, and prp,p, are self-dual bases to determine
M (ppp, s35). This gives
o U +H(B) ()
M (ppp, 558) (g ) (i) = M (858, PPP) (o) - —————

ZaZB%y

XE;\[:MJ’) ) +U(B)+(v) XEQZ:))

FEHEHO 2 25z, 2022y

We now give an analog of the Murnagham-Nakayama rule to interpret the

character y(*#7) combinatorially. Above, we showed that

HWH ) 5 b,  TGET
— X
R
We now interpret this coefficient in terms of rim hook tabloids.
Start with the following relation (see [6]).
PnSa = Z(—l)T(p/a)_ISp,
aCp
where the sum is over all p such that p/a is a rim hook of length n, and r(p/«)

is the number of rows occupied by the rim hook. We then have the following

identities.
Pu(X Y + Z)sadpdy = Y (=1) 007,555, (4.23)
aCp
pu(X + €Y 4+ EZ)s03p8, = Y _(=1)D75,5,5. (4.24)
BCp
pu(X 4+ EY + eZ)sadpdy = Y (=1) 010,558, (4.25)
~vCp

Then, summing (4.23)+(4.24)+(4.25), we obtain
3pn(X)sadp5, = Z(_I)T(p/a)_lspgﬁéw

aCp
+Y ()T 5,8, + Y (=) T s 58, (4.26)

BCp yCp



Summing (4.23)+¢*(4.24)+¢€(4.25), we obtain

3pn(Y)sa855, = Z(_I)T(p/a)_lspgﬁéw

aCp

—I—Z r(e/B)= SSSW—I-Z

BCp ~vCp
Summing (4.23)+€(4.24)+€*(4.25), we obtain

3pn(Z)sa5p5, = Z(_l)T(p/a)_lspgﬁéw

aCp

—I—Z r(e/B)= SSSW—I-Z

BCp vCp

(oo Soa
/) 05550
r(p/e)= 3a§5§p.
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(4.28)

The expressions (4.26), (4.27), and (4.28) give rules to express the coefficient of

54535, as a sum of weights of a row brick tabloid of shape « * 3 * v with hooks of

= [[,er w(h) where
w(h) is defined as follows, depending on which part of the shape a * 7+~ the hook

lengths Ay, ..., Ay, fias -+ s faguys Vis - - - Vi) We have w(T)

appears in. Note that r(h) denotes the number of rows that a hook h occupies.

o If  lies in a, then w(h) = (—1)""W~1,

o If h lies in 3, then

, h corresponds to a A;,

w(h) = &(=1)"M=1 h corresponds to a u,

,  h corresponds to a v;.

, h corresponds to a A;,

w(h) = e(=1)"M=1 " h corresponds to a s,

, h corresponds to a v;.
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In all cases the weight has a factor of (—1)""~' the usual sign for a rim hook.

Thus we can write w(T') as

W(T) = sgn (T ORI+ (B)+2h7(v)

Y

where h*(/3) denotes the number of hooks appearing in /3 that correspond to a g,

and so on. This then gives the following theorem.

Theorem 4.1. Let (o, 3,7v) F n and (A, p,v) = n. Then

(e,87) _ 2hH(B)LhH () +h” (B)+2hY
X(rpw) = Z 2P (B)+RH () +R¥(P) (W)Sgn(T)7
TERH{T)

where RH&*TJ) is the set of rim hook tabloids of shape o * 3 x ~ filled with hooks

of lengths Av, ...y Mi(ays 1y -+ 5 Hi(u)s V1o -+ 5 Vi() -

4.6  M(ppp, mmim) and M (mmin, ppp)

We use the fact that mym,m, and h/\iluill, are dual bases. To find
M (ppp, mmm), begin with the relationship

<p/\ﬁp,ﬁy> = <hozilﬁil’v> M(hilh7p]5ﬁ)

Taking duals gives
) +U(B)+(v)

<mx\mumu> = < pa};ﬁ}aw> M(hili%pﬁﬁ)T

20237y
Thus we have

o U +H(B) () aa
M(ppp7 mmm)(a,ﬁ,’y)(/\,u,u) = —M(hhh7 ppp)(/\,u,u)(oz,ﬁ;y)

2R 3%
= 2

(1)U PO =) =) =10) 2P (51 (B)+P () 420 (1)
‘fEQrA’M’V

auk By

w(f). (4.29)

ZaZ3%y

Note that here our objects are diagrams of shape a * 3%~ filled with bricks of type

a, pt, and v such that each row contains all A-, p-, or y-bricks.
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Similarly, to find M (mwmm, ppp), begin with
<hx7w7%> = (paBspn) M (ppp, hhh).

Taking duals gives

IVHW+HE) o o
<ZAZ—ZPAPMPV> = (mompriny) M(ppp, hhh)".
1147
Thus we have
I ZINZ e
M(mmm, ppp)(n77',/))(/\7#,l/) = WMM(ppp, hhh)(/\vﬂvl’)(ﬁﬂ',p)
B 2{: 6M¢0+2Mr)+2uey+uw)ZAZMZy
(c,8,7)F|n| 31(/\)+I(M)+l(y)ZaZﬁZryZ¢Z¢Z7TZ5Z€ZW
(¢7¢77T)|_|T|
(57€7W)'_|/)|
o p+E=A

B+y+i=p
y+rtw=v

4.7 M(ppp, fff) and M(fff.ppp)

As in the previous section, we use dual bases. Here, we use that fAfMﬁ, and

eré é, are dual. To find M (ppp, fff), we begin with the relationship

OBet gy O Bopgr,r OBspbgas,p-

(Papupy) = (€apéy) M(céé, ppp).
Taking duals, we have
- U)H@E+ e T
Mulv) =\~ PaPsPy ece, ppp) -
Intul M )
20237y
Thus we have
U +UB)+I(y)

M(pﬁﬁv f.ff)(oz,ﬁ,’y)(/\,u,u) — —M(eéévpﬁﬁ)(/\,u,u)(a,ﬁ;y)

2R 3%

3 (1)t =1) 21 (B4 (B () 4217 ()

2NTH
FeFNY,

w(f)-

ZaZ3%y
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To find M(fff,pﬁﬁ), we begin with
(exéuén) = (paPppq) M(ppp, ecé).

Taking duals gives

JOVH@HE) o
<—pxpupu> M (ppp, e€é)" .
ATy 2y

Thus,

P N N u Ry N
M(fff?ppp)(U,T,p)(A7p,7y) = WMM(}?}?}?, 666)(/\7%1,)(777770)
(_1)n—l(a)—l(ﬁ)—l(w)—l(@—lw)—l(r)—l(a)—z(e)—z(w)61(¢)+zz(w)+zz(9)+z(w)ZAZMZU

B (o ﬁzw):l-lnl 3I(A)+l(u)+l(l})Zazﬁzw%zwzrzézé’zw
(¢20ym)b |7
(6,6,w)t|p|
ot pLE=A

B+y+i=p
y+rtw=v

X OBaspynOBssitr,s OBsiopu,p-



Chapter 5

The Permutation Enumeration of

03§Sn

In this chapter, we extend the ideas of Beck and Remmel’s proofs regarding
the permuation enumeration of 5, and B, to ('385,. We use the combinatorics
and representation theory to define an appropriate analog, &y (with W for wreath
product), of £, and to prove similar results for the image of this analog applied to
various bases of a certain space of symmetric functions. We conclude the chapter
by indicating how the proofs can be extended to arbitrary wreath products C3§95,.

It is important to note that in the case of (58S, we have much more choice
than in the S5, and B, cases. In B,, there is a natural ordering on the elements
that make up B, elements which is natural when considering it as a Coxeter group.
Since (385, is not a Coxeter group, there is no longer a geometric interpretation
with which to determine an ordering on the letters that make up elements of C'5§.5,,.
There are a lot of ways that we can define these orderings, which in turn lead to
different definitions of statistics on these elements, and to different definitions of
the analog of £. For example, we can have elements with certain signs be ordered
in the reverse order, as are the barred elements in B,,. We can choose to give
this reverse ordering to none, one, or two of the signs. We choose here to use

the ordering where no sign has the reverse ordering because it gives results which

82
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are most easily generalizable. Note that in doing so, however, we sacrifice some
information that we could otherwise have gained. The results obtained using a
different ordering, that where one sign has the reverse ordering, including the

appropriate definitions of statistics, are stated without proof in Appendix A.

5.1 Preliminaries

We begin by giving some definitions that we will need in this chapter.
Define a partial ordering 2 on the letters 1,2,... .n,1,2,...,7, i 5, ..., by

1<92<Q"'<Qn,

N
|

T<Q < <qn

||

T<Q <Q"‘<Qﬁ.

Define a second partial ordering , which equates those letters with the same un-

derlying letter.

I
||

Il
N

l=T=1<r2=2 n

<r---<rn

Recall that for an element o = o105 --- 0, € (385, the sign of a letter of the
element is denoted by €(o;). The sign of the element itself is just the product of
the signs of the letters, []i_, e(0y).

Given all this, we define a number of statistics on elements of ('5§5,,. Define

the number of U385, -descents of an element o to be

desw(o)=|{i:1<i<n—1,0, >q 0i31}| =

He:1<i<n—1,¢e(0;) = €(0i41), 00 > o1}

For example, if o = 86—2743:15, then desw (o) = [{1,2,4,6}| = 4. Given a partition
A= (A, Az, ..., ) of n, we define the number of A-descents, desw (o) in the
following way. Write ¢ = o105 0, in one-line notation and break it into pieces

of lengths Ay, Ao, ... A, Then count only the C3§5,-descents that occur with
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both 2 and ¢ + 1 in the same piece. For example, if o = 86—2743:15, we break o

into pieces [8][627] [43:15], and desw (o) = [{2,6}] = 2. We define the number of

('385, -inversions of o by
invw (o) = [{(¢,7): 1 <i<j<n,o;>p o}

For example, if o = W743:15, then invw (o) =T7+54+1+4+442+140=20. The
number of (385, -descedances of the element o is defined on the cycles of 0. Write

o in cycle notation as

0= (01,015, 01, 2y, 0ys v 02 )+ (Oky s Thysy e ,O'klk).

Then the number of (385, -descedances of o, denoted dew (o), is given by

k
dGW(O') = Z(H] 1 S] S ZZ - 176(0-i]) = G(Uij+1)70-ij > O-ij+1}|

+ X(Uili > Ui1)X(6(Uili) = 6(0i1)))'

3
of

For example, if o = (1,38, 6,3
We now define an analog

)(57 771)7 then deW(U) = 3.
.

Definition 5.1. If Ay, is the space of symmetric functions defined in (3.3), the

homomorphism &, : Aw — Q[x] is defined on the elementary basis by

bwlen(X 1V 17y = Lmo 0o (-

37!
1 — )t _ n—1 202 2 _\n-1
fW(en(X +eY + GQZ)) — ( J}) + 6(6 6?;7/') ’ + ¢ (6 € x) 7
"nl
1 —g) ! 2(e2 _ 2,01 . n—1
Ewlen(X + Y + 7)) = ( ) + €*(e 36 :Jf) + e(e — ex)
"nl

for n € {1,2,...} and by setting &w(eo(X + Y + 7)) = &w(eo( X + €Y + 7)) =
Ewleo X + Y +eZ)) = 1.

Note that we do not write these expressions in the most concise manner possible.
This is because this manner of writing them suggests the combinatorial proofs that
will come later. We will now consider what the results are when & is applied to

the homogeneous, power, and Schur bases of Aw,.
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5.2 <¢w Applied to the Ay, -Homogeneous Sym-

metric Functions

The transition matrices between h) (X +Y+2Z)h (X +€Y +e2Z)h, (X +e2Y +€7)
and e, (X +Y + Z)es(X + €Y + €2 Z)e (X 4+ €Y + €Z) are just triples of matrices
from the S, case. That is, we can express hy(X+Y +7) in terms of e, (X +Y 4+ 7),
h(X + €Y 4+ €7) in terms of eg(X + €Y + €27), and h, (X + €Y + €Z) in terms
of e,(X + €Y + €Z). Because of this, we treat each of these cases separately.

5.2.1 &y Applied to h, (X +Y + Z)
If we apply &w to h(X +Y + Z), we achieve the following result.

Theorem 5.2. Let & be the homomorphism defined in Definition 5.1. Then

Fnlew (ha (X +Y +2)= Y alewl),

UGOS§Sn

where desy (o) is the number of C38S,-descents.

Proof. We begin with the following expression, which can be found in [7].

hal X +Y +2) =) (=1)""MWB, (e X +Y + Z),

ubn

We multiply by 3"n! and apply &w to get

3ty (ho(X +Y + 2)) =Y 3™l(=1)"" B, ) éw(e X +Y + 7))

pkn
{(n) i—1 i—1 i—1
_ 23%!(—1)”—’(“)3%@) H (1 —az)" '+ (1 ;Mx)*: + (1 —a)~
ukn i=1 fhi-
I(u)
SN ) | (e
urn TEB, (,y Mo M/ 50

We interpret this as a sum of signed, weighted objects 0 € Osp,,. For a given

partition g, and a p-brick tabloid of shape (n), the multinomial coefficient fills
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Figure 5.1: An example of an object in Osp, .

each brick with a decreasing sequence of integers such that exactly the integers
1,2,... .n are used. Each brick is designated as regular, barred, or double barred.

Each cell ¢ is given a weight according to the following rule.

, c is at the end of a brick,

—1 or &, otherwise.

This accounts for the (@ — 1)*~! terms. Define the weight of an object o by

Hceo w(c). Then we can write

()
Z Z (,Ul, ) ‘7‘17/”(#)) H ((:1; — 1)#1‘—1 + (z — 1)#1‘—1 +(x— 1)M—1>

ubn TEBM(n) =1

An example of such an object is given in Figure 5.1.
We now perform a sign-changing, weight-preserving involution on these objects.
Proceed from left to right through the tabloid until one of the following occurs,

then perform the appropriate operation.

o If there is a cell ¢ with weight —1, split the brick after ¢ and change the
weight of ¢ from —1 to +1.

o If there is a decrease from the integer filling of the last cell of one brick to
that of the first cell of the next brick, and the two bricks are of the same
type, join the two bricks together and change the weight of ¢ from +1 to —1.
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Figure 5.3: An example of a fixed point of the involution on Osp, .

An example of the involution is given in Figure 5.2.
The fixed points of the involution are signed and weighted p-brick tabloids of
shape (n) filled with integers which have the following properties:

o The integer fillings decrease within each brick, and increase between consec-

utive bricks of the same type.
o A cell is weighted by 1 if it occurs at the end of a brick, or by = otherwise.

An example of a fixed point of the involution is given in Figure 5.3.

Interpret the integer fillings of the brick, read left to right, as an element of
(589, with elements in regular, barred, and double barred bricks corresponding
to regular, barred, and double barred elements, respectively. Then each C3§5,-

descent is weighted by = and all other transitions are weighted by 1, giving the
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result. [ |

5.2.2 &y Applied to h, (X + €Y +¢27) and h, (X + 2Y +€Z)

When &y is applied to the bases h, (X 4+ €Y + €2 7) and h,(X + €*Y + €Z), the

result is the following.

Theorem 5.3. Let & be the homomorphism defined in Definition 5.1. Then

3 nléw (ho(X + eV +€2)) = > e(o)a®™ () (5.1)
UGOS§Sn

3 nléw (ho(X + €Y +eZ))= > (o)), (5.2)
UGOS§Sn

where desy (o) is the number of C§S,,-descents of o.

Proof. We begin by outlining the proof of (5.1). Following the same steps as in
the proot of Theorem 5.2, we come to the identity

3"l (ho (X + €Y + 7)) =
I(u)

2,2 <M1’ - éﬁ”(u)) [T (@ =D 4 elea — )™t 4 E(Fa — )t

ubn TEB, () i=1
We interpret this as a sum of signed, weighted objects o € Osp,;. We again
have p-brick tabloids of shape (n) filled with the integers 1,2,... ,n such that the
integers decrease within each brick, and each brick is designated as regular, barred,
or double barred. The difference comes with the weight on each cell. Here, the
weight on a cell ¢ depends on what kind of brick it lies in. The weights are given

by the following.

o If ¢ is in a regular brick,
, c is at the end of a brick,
—1 or z, otherwise.

This accounts for the (z — 1)*~! terms.
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Figure 5.4: An example of an object in Ogp, ;.

e If ¢ is in a barred brick,

, ¢ 1s at the end of a brick,

—cor er, otherwise.

This accounts for the e(ex — €)*~! terms.
e If ¢ is in a double barred brick,

€ c is at the end of a brick,

—¢c% or 2z, otherwise.

This accounts for the €?(e*x — €?)*~! terms.
Define the weight of an object o by w(o) = [].c, w(c). Then we can write

()
Z Z <M1’ e 7W(u)) H ((z =) Feler — )7+ E(fa — )71

ubn TEBM(n) =1

An example of these objects is given in Figure 5.4.
We perform a similar involution to that in the proot of Theorem 5.2. Traverse
the tabloid from left to right. At the first occurrence of one of the following,

perform the corresponding operation.

o If a cell ¢ has weight —1, —e¢, or —¢?, split the brick after ¢ and change the

weight of ¢ from —1, —¢, or —e® to +1, +¢, or +¢2.



90

o If there is a decrease between the integer filling of the last cell of a brick and
that of the first cell of the next brick and both bricks are of the same type,
join the two bricks and change the weight of ¢ from +1, +¢, or +¢* to —1,
—e¢, of —¢€%.

The fixed points then are u-brick tabloids of shape (n), filled with the integers
1,2, ... ,n such that the integer fillings decrease within bricks and increase between
consecutive bricks of the same type. Each brick is designated as regular, barred,
or double barred. The weights on the cells are as follows. In a regular brick, the
cell at the end has weight 1 while the others have weight z. In a barred brick, the
cell at the end has weight € while the others have weight ex. In a double barred
brick, the cell at the end has weight ¢? while the other cells have weight ¢?z. If we
again consider the filling of an object as an element of (3§85, the x weights appear
precisely in the cells with (385, -descents. Each cell in a barred brick contributes
¢ and each cell in a double barred brick contributes ¢2. This contribution of signs
corresponds to the sign of the element, (o). Thus we have the result.

The proof of (5.2) is nearly the same. The only difference is in the weights
placed on each cell in our interpretation of the sum. The weight on a cell is given

by the following.
o If ¢ is in a regular brick,
c is at the end of a brick,

—1 or &, otherwise.

e If ¢ is in a barred brick,

€, c is at the end of a brick,

2 2

—e? or ez, otherwise.

Y

e If ¢ is in a double barred brick,

¢ 1s at the end of a brick,

—cor er, otherwise.
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In this case, the fixed points are the same, except that barred cells contribute ¢
and double barred cells contribute e. This gives the complex conjugate of the sign

of the underlying element of C3§5,,. |

5.2.3 &y Applied to (X +Y + Z), h,(X + €Y + €Z), and
ho(X + €Y +eZ)
It we apply &w to the h)’s rather than just the h,’s, we obtain generating

functions for the statistic desw, (o) on elements of C385,. The specific results

follow.

Theorem 5.4. Let &y be the homomorphism defined in Definition 5.1. If X is a

partition of n, then

Bnléw (i (X +Y + Z)) = Y ateowl) (5.3)
UGOS§Sn

3 nléw (h(X +eY +2)) = Y eo)atoma), (5.4)
UGOS§Sn

3 nlew (h(X + &Y +eZ)) = > elo)atema), (5.5)
UGOS§Sn

where desw (o) is the number of C38S, A-descents of o.

Proof. We begin by outlining the proof of (5.3). The proofs of (5.4) and (5.5) are
very similar. The only differences are the same as the differences between the proof
of Theorem 5.2 and the proofs of (5.1) and (5.2).

By the same steps as before we obtain the expression

()
Z Z (Hla ‘ ‘7‘17/”(#)) H ((:1; — D (=) 4 (2 - 1)M—1> ‘

pkn TEB, A =1
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Figure 5.5: An example of an object in Os,.

We again interpret this expression as a sum of signed, weighted objects o €
Osp,. Now we have p-brick tabloids of shape A, rather than one-row shapes. Each
brick is again designated as regular, barred, or double barred. The multinomial
coefficient fills each cell with the integers 1,2, ... ,n such that the numbers decrease
within each brick. Each cell is given the same weight as in the proof of Theorem
5.2: 1 if it is at the end of a brick and either —1 or x otherwise. The weight of an
object o is defined by w(o) = [, w(c). Then we can write

()
Z Z (,lh, . '7‘17/”(;;)) H <($ - I)M_l + (z — 1)“"_1 + (z — 1)M—1>

pukn TEB, A =1

An example of these objects is given in Figure 5.5.

We perform a sign-changing, weight-preserving involution on these objects.
Traverse each row from left to right, considering the rows from top to bottom.
At the first occurrence of one of the following conditions, perform the appropriate

operation.

o If a cell ¢ has weight —1, split the brick after ¢ and change the weight of ¢
from —1 to +1.
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o If there is a decrease from the integer filling of the last cell ¢ in a brick to
that of the first cell of the next brick and both bricks are of the same type
and lie in the same row, join the bricks together and change the weight of ¢

from —1 to +1.

The fixed points of the involution are u-brick tabloids of shape A filled with the
numbers 1,2,... ,n, such that the following properties hold.

o The integers decrease within each brick.

e The integers increase between consecutive bricks of the same type within a

Trow.

o The last cell in each brick is weighted by 1. All other cells are weighted by

x.

Consider the integer fillings, read left to right in rows and reading rows from top to
bottom, to be an element of C'5§5,,. The cells that correspond to C3§5),-descents
within each row are counted by an x, but we have no idea what happens between
rows. This is the same as counting the statistic desw (o), which counts descents
within pieces of sizes A1, Ag, ..., Ay, but says nothing about descents that might
occur between the pieces. This proves (5.3). (5.4) and (5.5) follow by similar

arguments. |

5.2.4 g¢-analogs for the Homogeneous Basis

Here we define a g-analog of & and determine its image on the homogeneous

basis of Ayy,.

Definition 5.5. Define the homomorphism &y : Aw, — (Qlg])[z] on the ele-
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mentary basis by

e x+v1z) = QO —a (a4 (e

37 [n]!
o (Z) ((1 o x)n—l + 6(6 . ex)n—l + 62(62 . 62x)n—1)
2 9
fwl(e (X + Y + 7)) = Tl :
o (2) — )" (e — ) 4 e(e — ex) !
EwlenX +6Y +e2)) = 4 (1 =)™ + (3”[n]! )"t ")

for n € {1,2,...} and by setting &y (eo(X +Y + 7)) = Ly (eo( X + €Y 4+ €27)) =
EW(eO(X + Y +eZ)) = 1.
Given this definition, if we apply &w to h, (X +Y + Z), we get the following

result.

Theorem 5.6. Let &y be the homomorphism defined in Definition 5.5. Then

3 )G (ha(X +Y + 2)) = Y ateowlogmw(), (5.6)
UGOS§Sn

3" ) w (R (X + €Y + €27)) = Z e(a)xdesW(g)quW(g), (5.7)
UGOS§Sn

3 )l&w (ha(X + Y +€Z)) = > e(o)atomDgimwlo), (5.8)
UGOS§Sn

where desyw (o) is the number of C38S, -descents, and invw (o) is the number of

(589, -inversions of o.

Proof. We will prove (5.6). The proofs of (5.7) and (5.8) are combinations of this
proof with the proofs of (5.1) and (5.2).

We begin with the transition matrix from the S, case

h, = Z(—l)n_l(“)Bm(n)en.

ubn
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Apply &w and multiply by 37[n]! to get

3G (h(X Y 4+ 2)) = 3 3l (—1)" "B, (o Ew (ea(X + Y + 2))

ubn

— Zgn n I )Bu - H q(“’) ((1 — x)m 1y (1 _ :1;)“1 T (1 _ x)“i_l)

pn 1=1 3M[ Z]
n . .
:Z Z [ ] Hq 1—:1;“’_l—l—(l—x)“’_l—l—(l—:1;)“’_1>.
ubn TeBm(n) Iul? ce 7Iul =1

We interpret this as a sum of signed, weighted objects o € Osy, .. The objects
are similar to those in Osp,,. Again, we have p-brick tabloids of shape (n). Each
brick is designated as regular, barred, or double barred. The cells are filled with the
integers 1,2,... ,n in the following way. For a given tabloid, let By, B, ..., B; be
the bricks that occur in order from left to right in the p-brick tabloid. Let b; = | B

so by,bo, ... by 1s a rearrangement of uy, pa,..., ;. We associate b; ¢’s with B;
and consider rearrangements in R(1%,2% ... ("), For each rearrangement r €
R(1%1,2% ... I’), we create a permutation o(r) in the following way. Number,

from right to left, first the 1’s, then the 2’s, and so on. We then take the inverse
permutation o7!(s). An example of this process is given in Table 5.1. By the

way we constructed o~(r), we have decreasing sequences of lengths by, b, ... , by,

which then fit into the bricks By, B,, ..., B;. By Theorem 1.1,

n — inv(r)‘
[,ulv Y 7] Z !

rER(101,202 .. 171)
By the construction of o(r), we have

inv(o(r)) = inv(e(r)) = inv(r) + (Z;) + (ZZ) ot (g’>

We now have p-brick tabloids of shape (n) filled with the integers 1,2,... . n

such that the integers decrease within each brick. We give each cell an x-weight
in the same way as the objects in Qg . If a cell is at the end of a brick, it gets a

weight of 1. The other cells have weights of either —1 or x. Here, each cell is also
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Table 5.1: Constructing the permutation o~!(r).
r 13 21 3 3 1 2 1 3 3
o) [£ 11 6 3 109 2 5 18 7
o9 7 4 1 8 3 11 10 6 5 2

Figure 5.6: An example of an object in Osy, .

given a g-weight. If ¢ is a cell filled with the integer ¢, the ¢-weight is ¢*, where p
is the number of integers that appear to the right of ¢ in the tabloid, and which
are smaller than :. As before, each brick is also designated as regular, barred, or
double barred. An example of these objects appears in Figure 5.6.

We perform the same involution as we performed on the objects of Osp,. Note
that the g-weight does not change when this involution is performed. Thus the

fixed points have the following characteristics.

o The integer fillings decrease within bricks, and increase between consecutive

bricks of the same type.
o The z-weight of each cell is 1 if the cell is at the end of a brick and x otherwise.

o The ¢g-weight is ¢” where p is the number of cells to the right of the cell with

smaller integer filling.

We again consider the filling as an element of C'4§.5,,. From the above characteristics
we see that the x-weight counts precisely the ('5§5,,-descents of the (585,,-element
filling the tabloid. Meanwhile, the ¢-weight counts the number of inversions of

that element.
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It we combine the proofs of Theorem 5.4 and Theorem 5.6, we obtain the

following corollary.

Corollary 5.7. Let &y, be the homomorphism defined in Definition 5.5. If X is a

partition of n, then

3”[”]'gw(h/\(X +Y + Z)) = Z xdesW,A(cr)qva(g)7

UGOS§Sn
3 ) & (ha(X + €Y 4+ 27)) = Z G(U)t,](/,clesvm(cr)qimw(g)7
UGOS§Sn

and

3n[n]'gw(h/\(X—|—62Y—|—6Z)) _ Z 6(0_)1/,51651/[/9\(0)qmwv(cr)7

UGOS§Sn
where desyw\(c) is the number of C58S,, A-inversions of o and ¢""?) is the num-

ber of (3895, -inversions of o.

5.3 Aw,-Power Symmetric Functions Under {w

Here we determine the image of the power basis, p\(X)p.(Y)p,(7), under the
homomorphism £y, defined in Definition 5.1, using the transition matrix developed
Chapter 4 and the combinatorial ideas from the previous section. We then deter-
mine the g-analog of the image of py(X)p,(Y)p,(Z), using the homomorphism &y,
defined in Definition 5.5.

5.3.1 &y Applied to py(X)p, (Y )p.(Z)

Here, we will prove the following theorem regarding the image of

A(X)pu(Y)p,(Z) under &
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Theorem 5.8. Let &, be the homomorphism defined in Definition 5.1. If
(A, p,v) En, then

3™n!

INZpiy

Ev(m(Xp(V)p(2)) = Y 2wl

€0 uw)

where Cy ) is the conjugacy class of Cs8S,, indexed by (X, p,v), and dew (o) is
the number of (385, -descedances of o.

Proof. We begin with the expression (4.19) developed in the previous chapter.

3HV W)+ )pA( 1Pu(Y)pu(Z)

eaégéw
(—1)" Z (—1){HUEVH) 2P+ (200 (7).
feFsy,

Multiplying by the size of the conjugacy class indexed by (A, u,v) and applying

Ew gives
3"n! 3"n!
X
Z/\ZMZl,fW(p/\( )Pu(Y') Z Z HH 2, 2 2,
(af)Fn fersoy

K (= 1)l =0) 2P D () 4200(0)

% ﬁ ((1 — ) (1 — ) 4 (1 — x)ai_1>

3aiaﬂ

=1

y ll(—ﬁ[) ((1 — )P (e — ex)P T 4 (e — 62:1;)5"_1>
3BM%!

XH( (1 —a) =t 4 (e — a)m ! + e(e — 6:1;)%'_1>

37“7ﬂ
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_ Z Z w(f)
HNHWHW) 2y 2, 2,

,8,
(a,8,7)Fn fej:;“ ke

* kY

| : )
Qr, ..y Qla), ﬂlv st 7ﬂl(ﬁ)7717 <o M)
[(@)
<T@ =1 4 (@ = D™ (2= 1))

()
X H ((:1; — 1)%_1 + 62(62:1; — 62)%_1 + e(ex — 6)7"_1> )
=1

We will adopt some new notation for the binomial coefficient which will allow the
cancellation of w(f). For a given f & .7'—3*’5’*1, let a1y, s g0y, By - o Boh)s
Yr()s - - - 2 Yr(t), With j + k41 =1(A) +{(p) + {(v) denote the lengths of the a-, -,
and ~-bricks appearing at the end of rows in f. Then we express the multinomial

coeflicient as

(alv <o Qa)s ﬂlv SR 7ﬂl(ﬁ)7717 SR 771(7)>
nn—1)--(n—=1IA)—=1(g)=1l(r)+1) (n —I(A) -
Qg(a) Qo) Bpr) By Ve Ve ) a(f)BH(f

~—

where a(f) denotes dy, &y, ... , i) With

a; — 1, the o brick is at the end of a row in f,

A

a; =
o5, otherwise.

The notation for B(f) and ¥(f) is similar. Using this notation, we have the fol-
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lowing.
3"n! X (f)
N fW(p/\( )pu( Z Z )+ )Z/\ZMZU
(e)bn peFy o
s 2P (W) +IP W)+ () +207 (v)
eI )= ) 1) 10) 1))
Q1) 0 Bu) - Bu)r=) V) a(f)BNHAS)

x H D> (= 1)+ (2 — 1))

X H ((:1; — 1)5"_1 + e(ex — e)ﬁ"_l + 62(62:1; — 62)ﬁi_1>
=1

()
X H ((:1; — 1)%_1 + 62(62:1; — 62)%_1 + e(ex — 6)7"_1>

=1
We now may cancel w(f), the product of the sizes of the bricks appearing at the

end of a row in f.

37n!

INZpZy

Ew (pr(X)pu(Y)pu(2))

n(n—1) n—1IA)—1l{p)— (v 1
_— Z (=) = U(p) = U(v) +1)

(/\)‘H( )+ (U)ZAZMZU

(B)bn feFe ﬁgy

e (171 2 0~ 0)
a(f)BAS)
(o)
<L =D+ @ =) 4 (@ = 1))
l(ﬁ)z_
< [T (@ =177 + elex — )7 4 (P — )57)

X H ((:1; — 1)%_1 + 62(62:1; — 62)%_1 + e(ex — 6)7"_1> . (5.9)

We interpret the above expression as a sum of signed, weighted objects o € Os,,.

For some (a, 8,7) F n, we have an element of FA*ﬁ*’L Designate each brick as
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Figure 5.7: A row of length 5 has 5 possible origins.

regular, barred, or double barred. Fill the object with the integers 1,2,... . n in
the following way. The term n(n—1)--- (n—=1(A) = I(p)+1(v)+1) fills the last cell
of the last brick of each row. The multinomial coefficient (7%28357(1;%(_;;”)) fills all of
the remaining cells with the integers not yet used in such a way that the numbers
decrease within each brick, with the possible exception of the last cell in the row.
To rectity this, for each row, we find the smallest integer, s;, appearing in that row
and move it to the last cell in the row. We move the number that was originally in
the last cell, a;, to the brick previously occupied by s; and rearrange the numbers in
that brick so they are decreasing. Place a star over the cell now occupied by «;. For
a row of length [, there are [ ways to obtain a given filling. For a simple example
of this, see Figure 5.7. We would like to ignore the marked cells and consider
only the fillings where the smallest number is at the end of each row, so we must
divide by the length of each row. If A\ = (1%12% ... p%) y = (11252 ...p) and
v = (19222 ... n) we must divide by 191Fbtegazthates . pantbaten  Fyrther, we
would like to ignore the order of the rows within each of A, p, and v, so we divide

by ai!---aylb!---b,ley - - ¢!l Thus we have divided by z)z,z,.
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Table 5.2: Weights of cells in the objects.

regular cells barred cells double barred cells

end of: | row | brick | none | row | brick | none | row | brick | none

« 1 1 x| 1 1 -1, x 1 1 -1, x
A I¢] 1 1 1, x|« € —¢, €X € € —€, €2x
vy 1 1 1, x | € € e S € —€, €X

« 1 1 x| 1 1 -1, x 1 1 -1, x
i I¢] € 1 x| 1 € —¢, €X € € —€, €2x
vy € 1 x| 1 € —e2, x| € € —€, €X

« 1 1 x| 1 1 -1, x 1 1 -1, x
v I¢] € 1 1, x | € € —¢, €X 1 € —e2, e2x
vy € 1 1, x| € € —e2 x| 1 € —€, €X

The weights placed on each cell depend on both whether the cell is in an a-,
B-, or 4-brick, and on whether it is in a regular, barred, or double barred brick.
They are defined as follows. A summary is given in Table 5.2, and an example of
the objects is given in Figure 5.8.

() If the cell ¢ is in an a-brick, the weight is given by

1, c is at the end of a brick,

—1 or &, otherwise.

This holds no matter what type of brick ¢ is in and accounts for the (@ — 1)®~!
terms.

(B) If ¢ lies in a B-brick, the weight is given by the following.

o If ¢ is in a regular brick,

€, ¢ is at the end of the last brick in a row of p,
(© €, c is at the end of the last brick in a row of v,
w(ce) =
1, c is at the end of a brick but not a row,

—1 or &, otherwise.

This accounts for the e2”(0) () and (z — )%t terms.
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Figure 5.8:

An example of an object in Os,.



e If ¢ is in a barred brick,

1, ¢ is at the end of the last brick in a row of p,
€2, ¢ 1s at the end of the last brick in a row of v,
€, ¢ is at the end of a brick but not a row,

—cor er, otherwise.

This accounts for the e2”(0) () and c(ex — €)% terms.

e If ¢ is in a double barred brick,

€, ¢ is at the end of the last brick in a row of p,
1, c is at the end of the last brick in a row of v,
€2, c is at the end of a brick but not a row,

—¢c% or 2z, otherwise.

This accounts for the e2”(0) () and 2(e?x — 2)Pi~L terms.

() If ¢ lies in a y-brick, the weight is given by the following.

o If ¢ is in a regular brick,

€, ¢ is at the end of the last brick in a row of p,
€2, c is at the end of the last brick in a row of v,
1, c is at the end of a brick but not a row,

—1 or &, otherwise.

This accounts for the ¢ 2" "and (x — 1)%~! terms.

e If ¢ is in a barred brick,

1, ¢ is at the end of the last brick in a row of p,
€, c is at the end of the last brick in a row of v,
€2, c is at the end of a brick but not a row,

—¢” or ¢“x, otherwise.
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This accounts for the "0 2" and e?(2x — )%~ terms.

e If ¢ is in a double barred brick,

¢ is at the end of the last brick in a row of p,
¢ 1s at the end of the last brick in a row of v,

€ ¢ is at the end of a brick but not a row,

Y

—cor er, otherwise.
This accounts for the /"0 2" and e(ex — €)%~ terms.

Define the weight of an object o by w(o) = [[.c, w(c). Then we can write the
expression in (5.9) as Eoeogp w(o).

We will now perform an involution on the objects. Proceed by traversing, one
at a time, the rows of the diagram, considering the rows from top to bottom, until

we find one of the following conditions, then perform the appropriate operation.

o If there is a cell ¢ with weight —1, —¢, or —¢?, divide the brick after ¢, and

change the weight of ¢ from —1, —¢, or —¢? to +1, +¢, or +c2.

o If there is a decrease from the integer filling of the last cell of one brick to
that of the first cell of the next, and both bricks are of the same type and in
the same row, join together to two bricks and change the weight of ¢ from

+1, +e€, or +€? to —1, —e, or —¢2.

An example of the involution is given in Figure 5.9.

The fixed points of the involution are elements of .7:;*’5’*1 filled with the integers
1,2,... ,n with the smallest number in each row appearing at the end. The integer
fillings decrease within bricks, and increase between consecutive bricks of the same
type in the same row. Each brick is designated as regular, barred, or double barred.
The cells are weighted in the following way, and depend on the type of row and
the type of brick they lie in. The weights are also summarized in Table 5.3, and

an example of a fixed point is given in Figure 5.10.
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1
TS| 11E) 2

v |1
20|16 | 7
cx —€

Table 5.3: Weights of cells in fixed points of the involution.

_____

S| 14| 2
1 T

2 |16 ||| 7
€Ex | —¢€ €

Figure 5.9: An example of the involution on Os,,.

regular cells barred cells double barred cells

end of: | row | brick | none | row | brick | none | row | brick | none
o 1 1 X 1 1 X 1 1 X
I¢] 1 1 X € € €x € € ex
vy 1 1 X ¢ ¢ *x € € €x
o 1 1 X 1 1 X 1 1 X
I¢] € 1 X 1 € €x € € ex
vy € 1 X 1 ¢ *x ¢ € €x
o 1 1 X 1 1 X 1 1 X
I¢] € 1 X € € €x 1 € ex
vy ¢ 1 X € ¢ *x 1 € €x
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r |1
=) |12 2
€ x| e
211 16 | 7
€xr | ex €

Figure 5.10: An example of a fixed point of the involution on Os,,.

5

€
SRS

T T 1

20 | 4[| T
€er | € €x | 2

_____

_____

1
19| 12
x 1

107



108

() If the cell ¢ is in an a-brick, its weight is given by

1, «c¢is at the end of a brick,

w(e) = 7

x, otherwise.

Y

(3) If the cell is in a B-brick, its weight is given by the following.

o If ¢ is in a regular brick, its weight is given by

¢, cis at the end of the last brick in a row of u,

¢, cis at the end of the last brick in a row of v,
vl = 1, cis at the end of a brick but not a row,

x, otherwise.

o If ¢ is in a barred brick, its weight is given by

1, cis at the end of the last brick in a row of p,

€2, cis at the end of the last brick in a row of v,
vl = €, c¢is at the end of a brick but not a row,

ex, otherwise.

o If ¢ is in a double barred brick, its weight is given by

€, ¢ is at the end of the last brick in a row of p,

1, c is at the end of the last brick in a row of v,
vl = €2, cis at the end of a brick but not a row,

e2x, otherwise.

(7) If the cell is in a y-brick, its weight is given by the following.
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o If ¢ is in a regular brick, its weight is given by

e, cis at the end of the last brick in a row of g,

2

¢“, cis at the end of the last brick in a row of v,

1

, cis at the end of a brick but not a row,

x, otherwise.

o If ¢ is in a barred brick, its weight is given by

1, ¢ is at the end of the last brick in a row of p,

€, c is at the end of the last brick in a row of v,

€2, cis at the end of a brick but not a row,

621'

, otherwise.

o If ¢ is in a double barred brick, its weight is given by

¢, cis at the end of the last brick in a row of 4,

1, cis at the end of the last brick in a row of v,
vl = €, c¢is at the end of a brick but not a row,

ex, otherwise.

Define a trivolution to be a map from a set to itself, f : S — S5, with the
property that for all s € S, f(f(f(s))) = s. We perform the following trivolution
on the remaining objects. Change each a-row to a f-row, change each -row to
a v-row, and change each ~-row to an a-row, maintaining the type of each brick,
but with the appropriate changes of weights on each cell. An example is given in
Figures 5.11, 5.12, and 5.13.

By considering the weights in Table 5.3, we can see what happens to the weight
of any given row throughout the trivolution. This depends, however, on whether

the row lies in A, u, or v. For this analysis, say that in all cases we begin with an



17 [ 11 . 17111 17 |11
r |1 cr | ¢ x| €
o2 (o] 2]l o [[o]2
z |1 x| 1 xz |1
T s |ml s |[E[5T
€r | €T € T T 1 x| 22 | €2
Figure 5.11: An example of the trivolution in A.
50— -
1 1 1 € 1 €
ex | ex | 1 x| 2x | 1 x 1

Figure 5.12: An example of the trivolution in .
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7 7 i

1611 16] 1] 16 1

T | €2 z |1 T | €

12| 17] 8 12|11 ] 8 1201177 §
1 €x | ¢2 1 etx 1 x| 1

Figure 5.13: An example of the trivolution in v.

a-row of weight w. Let b be the number of barred cells in the row, and let d be the
number of double barred cells. We determine what changes occur in this weight,
depending on where the row lies. We use this to determine the fixed points of the
trivolution, an example of which appears in Figure 5.14.

(M) If the row lies in A, The first application of the trivolution changes the sign
on each barred cell by ¢ and on each double barred cell by ¢2. When the involution
is applied again, the weights on the barred cells are now ¢* times their original

weights, and the double barred cells are € times their original weights. Thus the

b+2d 2b+d

weights of the row as a-, -, and ~-rows are w, €7*%w, and €*°7%¢, respectively.
Summing over the objects, we have w + "*2%w + ¢+, If b+ 2d = 0 (mod 3),
then this sum is 3. Otherwise, the sum is 0. Thus we are only left with those rows
that have b+ 2d = 0 (mod 3). In this case, we might as well consider each row as
an a-row, so we divide by 3/ to disregard the a-, 8-, and ~-rows.

(1) If the row lies in g, the first application of the trivolution changes the sign
on each barred cell by ¢ and on each double barred cell by ¢%, with the exception
of the cell at the end of the row. If the cell at the end of the row is a regular cell,

its sign is €2 times the original weight; if it is a barred cell, its sign doesn’t change;
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17|10
z |1
SUESR
X
I 5 |71
x 1

T5:]19 !

1 1
1361113
z |1 1
T
1
16| T
z |1
T2 115
1 z |1

Figure 5.14: An example of a fixed point of the trivolution on Os,.
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if it is double barred, it only increases by e. When the trivolution is applied again,
the weights on the barred cells are now ¢? times their original weights, and the
double barred cells are e times their original weights, again with the exception of
the last cell. If the last cell is regular, its weight is now e times its original weight;
if it is barred, the weight again remains the same; if it is double barred, the

weight is ¢* times its original weight. Thus the weights of the row as a-, 3-, and

6b—|—2d—|—2><(end cell reg)—x(end cell barred)—x(end cell double) b4+2d+2

Y-TOWS are w, w = ¢ w, and

62?)—|—d—|—><(end cell reg)—2x(end cell barred)+x(end cell double) 2b4+d+1

w = € w, respectively, where
X (statement) is 1 if the statement is true and 0 if it is false. Summing over the
objects, we have w 4 "2 2p 4 24dtly, If b4+ 2d = 1 (mod 3), then this sum
is 3. Otherwise, the sum is 0. Thus we are only left with those rows that have
b+2d =1 (mod 3). In this case, we might as well consider each row as an a-row,
so we divide by 3! to disregard the a-, #-, and ~-rows.

(v) If the row lies in v, the first application of the trivolution changes the sign
on each barred cell by ¢ and on each double barred cell by €%, with the exception of
the cell at the end of the row. If the cell at the end of the row is a regular cell, its
sign is ¢ times the original weight; if it is a barred cell, its sign is ¢? times its original
weight; if it is double barred, its weight doesn’t change. When the trivolution is ap-
plied again, the weights on the barred cells are now ¢* times their original weights,
and the double barred cells are € times their original weights, again with the excep-
tion of the last cell. If the last cell is regular, its weight is now ¢? times its original

weight; if it is barred, the weight is e times its original weight; if it is double barred,

the weight again does not change. Thus the weights of the row as «a-, -, and

6b—|—2d—|—><(end cell reg)+x(end cell barred)—2x(end cell double) b4+2d+1

Y-TOWS are w, w = ¢ w, and

62()—|—d—|—2><(end cell reg)—x(end cell barred)—x(end cell double) 2b4+d+2

w = ¢ w, respectively. Sum-
ming over the objects, we have w + ebt2dtly, 4 2bHdt2y,  Tf 4 9d = 2 (mod 3),
then this sum is 3. Otherwise, the sum is 0. Thus we are only left with those rows
that have b+ 2d = 2 (mod 3). In this case, we might as well consider each row as

an a-row, so we divide by 3/*) to disregard the a-, -, and ~-rows.

We now interpret each row of a fixed point as a cycle in an element of (345,
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40188 | |22]6 | [35]12]11| 5

=l
— | Do

X x 1 x 1 X X xXx 1 x

—  (10,18,8,22,6,35,12,11,5,10,2)

Figure 5.15: An example of the interpretation of a row as a cycle.

with & and & corresponding to ¢k and €*k, respectively. See Figure 5.15 as an exam-
ple. Within each cycle, decreases between letters of the same type are weighted by
x, while all decreases between letters of different types and increases are weighted
by 1. This corresponds to the definition of (385, -descedances. Note that in A, we
have cycles with b+2d = 0 (mod 3), so the sign of the cycle is ¢¥2¢ = 1. In p, we
have cycles with b+ 2d = 1 (mod 3), so the cycles have sign e. In v, b+ 2d = 2
(mod 3), so the cycles have sign €. Thus the element of (385, corresponding to
each object remaining after the involution and trivolution belongs to the conjugacy

class indexed by (X, g, v), and its weight is z4w (7). [ |

5.3.2 g¢-analogs for the Power Bases

Our ultimate goal here is to determine the image of 3" [n|!p\(X)p.(Y)p,(7)
under the homomorphism &y, given in Definition 5.5. To do this, we will first
determine the images of 3*[k]!px(X), 3*[k]!pe(Y), and 3*[k]!pr(Z). We then obtain
the desired result as a corollary.

We begin by proving the following theorem.
Theorem 5.9. Let &y be the homomorphism defined in Definition 5.5. Then
By (pe(X) = 3 atew o=t o) (g1(0) _ (g 1))
seCsgsH

where 03§S,g1) is the set {o € U585, : e(o) = 1}, and t(o) is the length of the

cofinal strictly decreasing sequence of integers of the same type of elements in the
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one-line notation of o.

Proof. We begin with the following expression, a specialization of (4.19).

k(X )pe(Vpo(Z) = > Y (=) @0y )

a, 3,
(a B, ’Y)Fk fe}—(k)*g*ﬂ

X e (X +Y + Z)es(X 4 €Y + 62Z)€7(X + %Y + ez).

We multiply this by 3*[k]! and apply &y to get the following.

PG (X)) = 3, D ()OO0 ()
(c,8,v)Fk fe]:&)ﬁ*g*q)

l(oz) (O;’) o a;—1 _ a;—1 _ a;—1

() (=)™ 4 (L) (L)

X 11( L )

O (D) (1= )P+ e — )Pt 4 (e — 2a)P)
q
<1 ( 35 (5, )

(1 —a) it 4 (e — Ea)it + e(e — ex)r™)
xH( 3l )'

k
- % ), ; |
Q1yenn y PUBY VLo -+ 5 Vi)

(1) fef(akﬁ g*m Qia), P - -

L6 (o= 0= 4 (o= 17 1))

w
X Hq(g’) ((x = 1)t e(ex — €)' + 2 (Efx — )77
o
X H q?) (x =1+ E(Ex— ) el —e)" 7).

=1
We interpret this as a sum of signed, weighted objects 0 € Os,q,. These objects
are clearly of shape (k) * 0 % 0, filled with bricks such that the single row in A is
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filled with all a-, -, or ~-bricks. We consider these separately, and divide the

above sum over objects in f&’)ﬁ*’gm into three sums over B, (x), Bg, k), and B, ().

atk feBa,(k)

: Hq(?) (=D "+ @ =1 4 (e = 1))

We consider the three cases separately.
First, assume that the bricks in the single row are a-bricks. We will prove the

following lemma.

Lemma 5.10.

Z Z w(f)L‘ ko‘()]

otk feBa,(k)

— Z xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0))

o€C38Sy

Y

where t(o) is the length of the cofinal strictly decreasing sequence of elements of

the same type in the one-line notation of o.
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Proof. We have an a-brick tabloid of shape (k). Designate each brick as regu-
lar, barred, or double barred. Fill it with the integers 1,2,... ;n in the following
way. For a given tabloid, let By, B, ..., B; be the bricks that occur in order from
left to right in the a-brick tabloid. Let b; = |B;| so by, by, ... b is a rearrange-
ment of ay,as,...,q;. We associate b; ¢’s with B; and consider rearrangements
in R(1%,2% ... "), For each rearrangement r € R(1%,2% ... [*) we create
a permutation o(r) in the following way. Number, from right to left, first the
1’s, then the 2’s, and so on. We then take the inverse permutation o='(s). An
example of this process is given in Table 5.1. By the way we constructed o~*(r),

we have decreasing sequences of lengths by, bs, ... , by, which then fit into the bricks

By, By, ..., B;. By Theorem 1.1,

n — inv(r)‘
[Oél, . ,Oé[] Z E

rER(101,202,... 1b)

By the construction of o(r), we have

inv(o(r)) = inv(e(r)) = inv(r) + (Z;) + (ZZ) ot (g’>

We now have an a-brick tabloid of shape (k), filled with integers such that they
decrease within the bricks. We associate to each cell ¢ a g-weight, w,(¢) = ¢?(),
where p(c¢) is the number of cells to the right of ¢ filled with a smaller number. By
the above argument, these will count the (3895, -inversions of the filling. As the
involution we will perform does not change the ¢g-weight, we will ignore it for now.
We also associate to each cell an xz-weight. This is given by

wa(c) = 1, c is at the end of a brick,
—1 or &, otherwise.
The last brick in the row is also weighted by its length. The weight of an object o
is then defined as

w(o) = (H wgg(c)wq(c)) (H |b|><(b is at the end ofarow)) ‘

c€o bEo
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We can then write

NP> w(f)L k@()]

atk feBa,(k)

0€O3pqs
We now perform the following involution on the objects. Note that changing
the size of the last brick in the row will change the weight of the object, since the
last brick is weighted by its size. Thus in the following involution, we do not change
anything about the last brick. Proceed left to right through the tabloid until the
first occurrence of one of the following and perform the appropriate operation,

unless the first occurrence occurs in the last brick.

o If there is a cell ¢ with weight —1, divide the brick after ¢ and change the
weight of ¢ from —1 to +1.

o If there is a decrease between the integer filling of the last cell ¢ of one brick
and that of the first cell of the next and both bricks are of the same type,
join the two bricks together and change the weight of ¢ from +1 to —1.

The fixed points of the involution are a-brick tabloids of shape (k), filled with
the integers 1,2,... ,n. In addition, each cell is designated as regular, barred, or

double barred. The fixed points have the following properties.

o The integer fillings decrease within bricks.

o The integer fillings increase between consecutive bricks of the same type, with
the possible exception of a decrease between the second to the last brick and

the last brick.

o The last brick has weight 1 in the last cell, and either  or —1 in the other
cells. In addition, it is weighted by its length.
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Figure 5.17: An example of ¢(o) and j.

e The other bricks have weight 1 in the last cell, and x in the other cells.
o Each cell has a ¢-weight as described above.

An example of a fixed point is given in Figure 5.16.

Let t(o) be the length of the cofinal strictly decreasing sequence of integers in
bricks of the same type. Note that this might correspond to either just the last
brick, or the last two bricks. Let j be the length of the last brick. See Figure 5.17
for an example of what this might look like. We want to count all of the descents
of the object. We pull these out, which means we must divide each of the weights,
except for the weight of the last cell, by x. These adjusted weights are shown in
Figure 5.18.

We can now rewrite the sum for the a-brick case as

t(o)—1

: 1 1. 1
desw (o) jgnvw (o) | — - J—1; 1 11— — t(o)-1
> g (DS (0 1 ) o -

oc€C38Sy 7=1

by splitting the possibilities into the case in which the second to last brick is part
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Figure 5.18: An example of the adjusted weights.

of the cofinal decreasing sequence, and the case when it is not. In both cases, we
have pulled out the terms z9*w (?)g*w(9) 5o we need only determine the adjusted
weights. The first sum is over all possible lengths of the last brick, assuming that
the second to last brick is part of the cofinal decreasing sequence. The % comes
from the last cell of the second to last brick. Within the sum, the j is from the
weight of the last brick, and the term (1 — %)j_l gives all the possible weights
of the other cells of the last brick. The last term corresponds to the case where
the cofinal decreasing sequence occurs only within the last brick. In this case, the
weight of the last brick is j = t(o). The last cell of the brick must have weight
1, but the term (1 — %)t(g)_l counts all of the possible weights of the other cells

in the brick. We can then rewrite this expression in the following ways to get the



desired formula.

g€C38S)

g€C38S)

g€C38S)

g€C38S)

g€C38S)

g€C38S)

This proves the lemma for the case that the tabloid is filled with a-bricks.

N
N
N
N

Yo
Yo
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desw (o) invw (o) ]—11 _ Zhtle)-1
il ED SN (RS PRI
J=1
t(o)—1
: d 1. 1
desw (o) invw (o) el _ _ Zytle)—1
ALY P i ST T )
J=1
. d {1 =21t 1
desw (o) invw (o) - x 1 1 — = t(o)—1

desW(cr)qian(cr) (l’ il’

desW(cr)qian(cr) (l’ . l’(l . l)t(0)>

desW(cr)—I—l—t(cr)qian(cr) <xt(cr) . (l’ . 1)25(0)) )

We now consider the case where the tabloid is filled with 3-bricks, and prove

the following lemma.

Lemma 5.11.

2. 2wl

Bk F€Bs 1)

ot )
Bi,.e s Bug)

1(8)
L) (tr = 17 4 cler = 0P 4 et — )

=1

Z 66(0)—|—2d(0)xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0))

o€C38Sy

Y

where t(o) is the length of the cofinal strictly decreasing sequence of elements of

the same type in the one-line notation of o, and b(c) and d(o) are the numbers of

barred and double barred elements of o, respectively.

Proof. The proof is nearly the same as the proof of Lemma 5.12. We again have

tabloids filled with the integers 1,2,...

,n using the same process as above, and
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g-weights that count the number of inversions. Again, each brick is designated as
regular, barred, or double barred. The only difference is in the z-weights placed

on the cells in the g-brick tabloid. Here the z-weights are given by the following.

1, ¢ is at the end of a regular brick,

€, c 1s at the end of a barred brick,

€2, ¢ is at the end of a double barred brick,
w(c) =

—lorz, ciselsewhere in a regular brick,

—cor er, cis elsewhere in a barred brick,

—¢e? or €%, cis elsewhere in a double barred brick.

The weights are the same as in the proof of the previous lemma, except that each
barred brick has an extra ¢ and each double barred brick has an extra ¢*. Thus we
can pull out a product ¢*(?)¥24?) \where b(o) and d(o) are the number of barred and
double barred elements in the C5§5;-element formed by the filling of the tabloid.
Once that is done, we perform the same involution and the same simplification of

the sum, but each term in the sum now is multiplied by (?)+24(7), [ |

We finally consider the case where the tabloid is filled with y-bricks. We have

the following lemma.

Lemma 5.12.

) Zwm[ y ]
Vs M)

Yk fEB%(k)

1(7)
X Hq(él) ((x _ 1)%‘—1 + 62(62:1/, _ 62)%—1 + 6(6:1; . 6)%._1>
=1

_ Z o) +(o) ooy (o) F11(o) ginvww (=) (1) (4  1)i())
o€C385)

where t(o) is the length of the cofinal strictly decreasing sequence of elements of

the same type in the one-line notation of o, and b(c) and d(o) are the numbers of

barred and double barred elements of o, respectively.
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Proof. This proof is again nearly the same as the proofs of Lemmas 5.10 and 5.11.
The objects are the same, with the only difference being the z-weights placed on
the cells. These are given by the following.

1, ¢ is at the end of a regular brick,

€2, c is at the end of a barred brick,

€, c is at the end of a double barred brick,
w(e) =

—1 or x, ¢ is elsewhere in a regular brick,

—¢c? or 2z, ¢ is elsewhere in a barred brick,

—cor e, ¢ is elsewhere in a double barred brick.

This corresponds to each barred cell having an extra ¢? and each double barred cell
having an extra e. We can then perform the same involution and simplifications

with each term in the sum multiplied by a factor ¢2*(?)+d(=), [ |

We are now ready to complete the proof of Theorem 5.9. We combine the

results of Lemmas 5.10, 5.11, and 5.12 with (5.10) to obtain the following.

3k+1[k]’gw(pk(X)) — Z xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0))

o€C385;,
4 Z 6b(cr)—l—?d(cr)xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) . (l’ . 1)25(0))
o€C385;,
+ Z 62?)(0)—|—d(0)xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0)) —
o€C385;,

Z <1 4 6b(cr)—l—?d(cr) 4 626(0)—|—d(0)> xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) . (l’ . 1)25(0)) )

g€C38S)

Note that
0, b(o)+ 2d(o)
3, b(o)+2d(oc)=0 (mod 3).

1,2 (mod 3),

1_|_ 6b(cr)—l—?d(cr) + 626(0)+d(0) _

Thus the sum is actually over all elements o of C3§S; such that b(o) + 2d(o) =0
(mod 3), that is, such that e(o) = 1. If we let 03§S,g1) be the set of all such
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elements, we have
3k+1[k]’gw(pk(X)) — Z 3xdesw(0)+1—t(0)qinvw(0) <xt(cr) _ (l’ _ 1)25(0)) )
seCsgstY
This completes the proof of Theorem 5.9. |

Our next step is to determine the image of 3%[k]!pr(Y") under &;. This is given
by the following theorem.

Theorem 5.13. Let &y, be the homomorphism defined in Definition 5.5. Then

3k[k]’gw(pk(y)) — Z xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) . (l’ . 1)25(0)) 7

seCs§SLY

where 03§S,(;) is the set {o € U585, : (o) = €}, and t(o) is the length of the cofinal
strictly decreasing sequence of elements of the same type in the one-line notation

of o.

Proof. We again begin with a specialization of (4.19).

3p@(X)pk(Y)p@(Z) = Z Z (_1)k—l(oz)—l(ﬁ)—l(w)621/3(#)+17(M)w(f)

a, (3,
(a,ﬁ,’y)l—k fef@*(k?*@

X e (X +Y + Z)es(X 4 €Y + 62Z)€7(X + Y + ez).

We multiply this by 3*[£]!, apply &y, and simplify in the same way as in the proof
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to Theorem 5.9 to get the following.
BHRIEw (p(Y) =
YYD e

(1) fef;*fk;*@ Aty Qs P15 Bi(e) T+ it

k

: Hq(?) (e =D "4 (z =1 4 (= 1))

1(B)

T (o= 157 4 e — 05 4 (e — )

=1
X Hq(gl) <($ o 1)%‘—1 + 62(621' _ 62)%‘—1 T 6(61’ . 6)71‘_1) ‘
=1

We interpret this as a sum of signed, weighted objects of shape (k)0 filled with
bricks such that the single row in g is filled with all a-, 8-, or 4-bricks. We can
consider these cases separately, and divide the above sum into three sums, as in
the proof of Theorem 5.9. Note that here we must account for the term 2P+ ()
by multiplying by € the sum corresponding to filling the row with 3-bricks, and
multiplying by e the sum corresponding to filling the row with 4-bricks. The above

sum is then equal to

=y Ejldﬁ[a k@(l

abk f€B, (1)

L) (=17 o = 1 = 1)

=1

2 k
P <f>[ﬂ1,...,@ ]

Bk £E€B (1)

><l_Iq :1;—1 ‘|'6(651?—6) Lye (6$—62)ﬁ’_1>
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+ez Z w(f)[ ' ]
Vs s i)

Pk €5, )
’y .
X Hq(él) <(:1; — 1)%'—1 _I_ 62(62$ o 62)%‘—1 _I_ G(GIE . 6)%_1> ‘
=1

These sums are the same as those evaluated in the proof of Theorem 5.9, so we

apply Lemmas 5.10, 5.11, and 5.12 to obtain the following.

3k+1[k]’gw(pk(y)) — Z xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0))

o€C385y,
4 Z o)+2d(o —I—Zxdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) . (l’ . 1)25(0))
o€C385y,
+ Z o)+1 desW( )—I—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0)) —
o€C385;,
Z <1 4 6b(cr)—l—2d(cr)—|—2 4 62?)(cr)—|—d(cr)—|—1>
o€C385y,

« xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0)) )

Note that

1 4 242 4 2hlo)Hdle) 4l 0, bo)+2d() = 0,2 (mod 3),

3, b(o)+2d(oc)=1 (mod 3).

Thus the sum is actually over all elements o of C5§S such that b(c) + 2d(o) =1
(mod 3), that is, such that e(o) = e. If we let 03§S,(;) be the set of all such

elements, we have

3k+1[ ] 5 Z 3xd55W o)+1—t(c )qinvw(cr) <xt(cr) _ (l’ _ 1)25(0)) )
aecg§s§j>
This completes the proof of Theorem 5.13. |

Next, we determine the image of 3*[k]!pr(Z) under &;,. This is given by the

following theorem.
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Theorem 5.14. Let &y be the homomorphism defined in Definition 5.5. Then

3k[k]’gw(pk(z)) — Z xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0)) 7

r€Cs58LY)

where 03§S,(;2) is the set {o € U385y : e(o) = €2}, and t(o) is the length of the
cofinal strictly decreasing sequence of elements of the same type in the one-line

notation of o.

Proof. We again begin with a specialization of (4.19).

3po(X)po(Y)pe(Z) = Z Z (= 1)F= 1= =) P +200(0) )

a,pB,
(a7ﬁ7’7)'_k fe}—@*@*zk)

X e (X +Y + Z)es(X 4 €Y + 62Z)€7(X + Y + ez).

We multiply this by 3*[£]!, apply &y, and simplify in the same way as in the proof
to Theorem 5.9 to get the following.

B (pe(2)) =

Z Z 615(1/)+217(1/)w(f)

(0B )k fergr, Aty Q) Brs o Bie) 155 )

o)
T (=0 4 = )
@ .

x H o) ((z =P Fe(ex — ) + E(Fa — €)F7)

=1

k

1(v)
X H q@) ((:1; — 1)%’_1 + 62(62:1; — 62)%_1 + e(ex — 6)7"_1> )
=1
We interpret this as a sum of signed, weighted objects of shape §x0*(k), filled with
bricks such that the single row in v is filled with all a-, 8-, or 4-bricks. We can
consider these cases separately, and divide the above sum into three sums, as in

the proof of Theorem 5.9. Note that here we must account for the term P20 ()



by multiplying by € the sum corresponding to filling the row with g-bricks, and
multiplying by ¢? the sum corresponding to filling the row with ~-bricks

above sum is then equal to

P [ 17---kaOf1<a>]

atk fEBa ()

k
+ ¢ w(f
2 2 v )[ﬁh--- aﬁum]

Bk fEB[@y(k)

1(g)
X H q(@) ((:1; — 1)ﬁi_1 + e(ex — e)ﬁi_l + 62(62:1;
=1

+EY Y w(f)[ ' ]
Vs i)

Yk fEB%(k)

62)@'—1)

1(7)
X Hq(;l) <($ o 1)%‘—1 + 62(62$ o 62)%‘—1 4 G(GIE N 6)%_1> ‘

These sums are the same as those evaluated in the proof of Theorem 5.9, so we

apply Lemmas 5.10, 5.11, and 5.12 to obtain the following.

3k+1[k]’gw(pk(z)) — Z xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0))

o€C385y,
+ Z o)+2d(o —|—1wdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) _ (l’ _ 1)25(0))
o€C385y,
4 Z o)+2 desW( )—I—l—t(cr)qinvw(cr) <xt(cr) . (l’ . 1)25(0))
o€C385y,

Z <1 _I_eb(cr)—I—Qd(cr)—I—l +626(U)—|—d(0)—|—2>

o€C38Sy

> xdesw(cr)—l—l—t(cr)qinvw(cr) <xt(cr) . (l’ . 1)25(0)) )
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Note that

0, b(o)42d(c)=0,1 (mod 3),

1_|_ 6b(cr)—l—2d(cr)—|—1 + 621)(cr)—|—d(cr)—|—2 _
3, b(o)+2d(oc)=2 (mod 3).

Thus the sum is actually over all elements o of C3§S; such that b(o) + 2d(o) = 2
(mod 3), that is, such that e(o) = €. If we let 03§S,(;2) be the set of all such

elements, we have

3k+1[k]’gw(pk(X)) — Z 3xdesw(0)+1—t(0)qinvw(0) <xt(cr) _ (l’ _ 1)25(0)) )

r€Cs58LY)

This completes the proof of Theorem 5.14. |

If (A, pu,v) & n, let C38S,(A pu,v) be the set of all ¢ = oy0;---0, such
that if o is broken up into segments of lengths A1, Ao, .oy Ayny, fias oy - 5 fagu)s
Vi,Vay ..., Vi), in that order, then the each segment corresponding to a part of A
has total sign 1, each segment corresponding to a part of p has total sign €, and

2

each segment corresponding to a part of v has total sign €*. We then have the

following corollary of Theorems 5.9, 5.13, and 5.14.

Corollary 5.15. Let &y be the homomorphism defined in Definition 5.5. If k +
[4+m =n, then

3" [n) ! (e (X )P (Y )pu(2)) =
Z deSW,(k,l,m) (U)qinvw(cr) > xl—t(cr) <xt(cr) . (l’ . 1)25(0))
c€C388n (k,,m)

xl—u(cr) <xu(cr) . (l’ . 1)u(cr)> xl—v(cr) <xv(cr) . (l’ . 1)1}(0’))

Y

where (o) is the length of the last strictly decreasing sequence of elements of the
same type in the first k elements of the one-line notation of o, u(o) is the length of
the cofinal strictly decreasing sequence of elements of the same type in the (k+1)%
through (k+1)"" elements of o, and v(c) is the length of the last strictly decreasing

sequence of elements of the same type in the last m elements of o.
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Note that in the above theorem, desw, (i m) is desw, where p is the nonde-
creasing rearrangement of (k,[,m). The proof follows those of Theorems 5.9, 5.13,
and 5.14. When creating a permutation such that decreasing sequences will fill the
bricks, integers are associated with the bricks from right to left in rows, considering
the rows in order from top to bottom of the diagram.

This easily generalizes to the following corollary, in which the partition (AUpUv)

is defined to be the nondecreasing rearrangement of
()\1, e 7)\1(/\)7 K1y ,,ul(u), Viyeoo 71/1(1/))-

Corollary 5.16. Let &y be the homomorphism defined in Definition 5.5.
If (N, p,v) En, then

3" )& (DA (X)pu(Y)pu(Z)) =

Z deSW,(AUMUv)(U)qinUW(U) H <x1—ti(0) <xti(0) _ (x _ 1)151‘(0)))

Uem(k,u,u) =1

4o 1)
% H <x1—ui(0) <xui(cr) _ (l‘ _ 1)ui(0)>> > H <x1—vi(cr) <xvi(cr) . (l‘ N 1)%(0))) :
=1 =1

where t;(0), u;(o), and v;(o) denote the length of the cofinal decreasing sequence
of elements of the same type in the segment of o corresponding to \;, p;, v;, re-

spectively.

5.4 &y and & Applied to s,(X +Y + Z), s)(X +
eY +€Z), and s)(X +€*Y +e7)

Here we consider the images of the Schur basis of Ay, under the homomorphism
&w. In order to give the results for the Schur basis, we need some notation and
definitions. Given a partition A = (A1, Ag,...,A;), let D(X) be the length of the
Durfee square, that is, the largest square that will fit inside the digram of shape
A. We also define the following partitions.
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- B R

SRS Eyoysn
ey LR

D(X)

Figure 5.19: An example of D(A), a(N), B(A), and y(A)/6(N).

o a(A) = (ay1,... ,apny) where oy = Ni_py4i — D(A), for i = 1,..., D(X).
o B(A)=(B1,...,Bp()) where 3; = )\;_D(A)H — D), fori=1,...,D(A).
o ’7()\) = (OéD(A) — ODMN)=1,AD(N\) — OD(\)=25 - - s OD(N) — 041)-

o 5(A) = (app) + DAY + B(A).

An example of D(A), a(A), B(X), and the shape v(X)/6(A) which will occur in
the following is given in Figure 5.19.

We now define the concept of special rim hook tabloids. Consider a Ferrers’
diagram F\ of shape A. Recall that a rim hook is a sequence of cells in Fy, such
that any two consecutive cells share an edge, and removal of the cells from the
diagram results in another Ferrers’ diagram. A rim hook tabloid of shape A, as
defined in (2.5), is a sequence of rim hooks that together form the shape A. A
special rim hook of X is a rim hook of A if one of its cells lies in the first column
of A\. A special rim hook tabloid of shape X and type p is a rim hook tabloid of
shape A and type p such that all of the rim hooks are special rim hooks. The sign
of a special rim hook tabloid is defined by sgn(T') = [],c7 sgn(h), where the sign
of a hook is sgn(h) = (—1)"™~1 and r(h) is the number of hooks occupied by the
hook h. It SRH, » is the set of all special rim hook tabloids of shape A and type
i, define
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[ ]
[ ]

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

Figure 5.20: An example of a rim hook tabloid and a special rim hook tabloid.

An example of a rim hook tabloid and a special rim hook tabloid, both of shape
(1,1,2,3,4,4) and type (3,3,4,5), are given in Figure 5.20.

We now have the necessary notation to state the image of the basis s,(X +Y +
Z)s (X +eY +e27)s,(X + €Y +eZ) under &y. We consider each term separately.

Theorem 5.17. Let & be the homomorphism defined in Definition 5.1. If A Fn,
then

D(M+apa

Fnlew(s\ (X +Y +2)= > 3"(1—2)"""Cpy, (5.11)
m=D(}\)

D(M+opy

Fnlew(sn(X + eV +E2) = Y. 371 —a) 0%, (5.12)
m=D(}\)

and

D(M+opy
3nlew(si(X +EY +eZ) = Y 31—z oW, (5.13)
m=D(}\)

where

_ n -1
Cor= Y (ph E 7pm>[xpw

pkn
I(p)=m
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0(3)/ — ( n >[{—1/7
o = 2 )10

pkn
I(p)=m
3|p;Vi

and ap(yy s the largest part of the partition a(A) defined above.

Proof. To prove (5.11), begin with the following identity, which is given in [7].

_ F—1
Sy = g Ap,k’ep‘

pkn

Multiply by 3"n! and apply &w to this to obtain

1_ P 1 _ P 1_ P
=Y 3L T k)l k) it k)

3”’/)2’

pbEn =1
1(p)

- ZKP_& <Pl, . .7.17/)1(/))) H <(1 —a) T (L =) (1 - w)pi_1>

pkn =1
= Z[{p‘&,( " )31(0)(1 — x)n—l(p)'
pFn PLs-- 5 Plp)
For Kpj, to be nonzero, we need D(A) < I(p) < D(A)+apy). Thus we can rewrite

the above as

D(M+opy

oD DD SR 1{
m=D(A P

) oF Tyee+ 3 Pm
l(p)=m

>3M(1 — )

D(M+opy

== Z 3m(1 —l’)n_m myA

m=D(}\)

This completes the proof of (5.11). The proof of (5.12) and (5.13) is similar. Begin
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with the same identity, multiply by 3"n!, and apply &w to obtain

3" nléw (sa(X + €Y + 62Z)) = 3"nlw (sr(X + e2Y + €Z))

1(p) _ ._ ._
. 3 (1 — )t 4 e(e —ex) ™! + (e — 2a)P!
S]]

il
pbn 3¢ Pi:
I(p)
— Z K _1< ) H _|_ 6( )pz‘—l + 62(62 _ 62x)/)i—1>
pkn o 7/)1 =1
n I(p)
= Z AM,< )(1 — ) He) H (14 ¢ + ).
ce 7/)1(/)) i

pkn

We have that 14 ¢” +€2* = 0 unless p; = 0 (mod 3), when it equals 3. As before,
Kp_&, = 0 unless D(X) < (p) < D(A) 4+ ap(). Thus the above becomes

3" nléw (sa(X + €Y + 62Z)) = 3"nlw (sr(X + e2Y + €Z))

A)+ap(a)

~ [x‘1,< " >3M1—x”—m
Z sz; oA Pis--- 5 Pm ( )
l(p)=m
3|piVi
D(M+opy
= > 3r—a)med.
m=D(}\)

5.4.1 Other Expressions for ¢, y and CT(,?)A,

We would like to find expressions for (', v and Cﬁi&, that are easier to compute.
This is possible for €, »». For CT(SA,, the expression we obtain is not necessarily
easier to compute, but it is interesting because it involves a new lattice condition.
In order to define this condition properly, we will pursue the following for arbitrary

Cr8S,, rather than the specific case with £ = 3. Now, we would like to find
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expressions for

n L

ubn
H(p)=m

and

e =3 (m " , )K;j,. (5.15)

ubn
H(p)=m
K|

In order to do this, however, we will need a number of definitions and lemmas.
The first thing we will consider is the case where m = D()). Brenti [3] proved
and Beck [1] gave a combinatorial proof of the following identity.

Theorem 5.18.

n
C ,— KL = (—1)leMl W(/\)/5(A)7
o= X (o Y= e

ubn
W=D

where FTON/SON s the number of standard tableauz of shape y(\)/8(N).

In order to examine Cﬁj&, for m = D()), we need more definitions. Egecioglu
and Remmel [7] introduced a sign-changing involution on the set of special rim
hook tabloids of shape A called hook switching. This maps a special rim hook
tabloid T" to another special rim hook tabloid 7" as follows. If two hooks h; and
hiy1 begin in the adjacent rows ¢ and ¢ + 1 in T, respectively, and end in rows s
and ¢, then Egecioglu and Remmel show that there is only one other way to cover
the cells occupied by h; and h;yq by two other special rim hooks A} and Al _, which
begin in rows ¢ and ¢ + 1, respectively. Figures 5.21 and 5.22 show the two cases
that need to be considered, with the cells of the diagram represented by dots. In
case (a), 1 > s and h; and b}, will end in rows ¢ — 1 and s, respectively. In case
(b), t < s and h} and Al,; end in rows ¢ and s + 1, respectively. Case (a) has a
special case in which h;;4 has length 1. In this case, the switch consists of gluing

together h; and hyy to form h{,,, and k] is an empty hook. We will not need this
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row ¢ + 1 row ¢ + 1
—o—o—o —o—o—o
TOW 7 o—e—e 0—I —> 1OW | —e—e
row 1 0—I ®
¢ rowt—1
o—® TOW S *—e I'OW S

Figure 5.21: Case (a), t > s.

row ¢ + 1 row ¢ + 1
* —o—o—¢ * —o—o—¢
TOW 7 —e—e —_— TOW | —e—e 0—I
0—I ) row s + 1
® row t
—e TOW S —e row ?

Figure 5.22: Case (b), t < s.

case in what follows, as our sum requires keeping the number of hooks constant.

Note that in both cases,

sgn(hi)sgn(hipr) = —sgn(hi)sgn(hiy),

thus this is a sign-changing involution. Note also that the lengths of the new hooks

are
B = lhisa] =1 and [Wy, | = [hi] + 1.

If there are two hooks h, and h, that begin in rows p and ¢, respectively, such
that ; begins with a vertical segment consisting of ¢ — p cells in the first column,
we say the hooks are adjacent, and they can be switched in the following way. We

switch them in 2(¢ — p) — 1 steps. Let hpi1, hpia, ..., hy—1 be the empty hooks
(r)

7

v after step r. In step r for 1 < r < ¢ — p, switch h(T__Tl_)l and A"~V that is,

q q—r

beginning in rows p+ 1,p+ 2,...,9 — 1. Let h;’ be the hook beginning in row

proceed from the top row to the bottom, switching adjacent hooks. At step r for
g—p+1<r<2(q-—p) —1, switch AU and hy—_z;I—)Qp-I—l? that is, go back up

r—q+2p
the rows, switching adjacent hooks. At each step, if we have changed hooks A=)
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[ ] [ ] [ ] [ ]
Lv—( . . L
p —>- I—O—(I —_— r— ¢ - 9 —>- I_Hl —>- p
*~—e *~—e ¢ *~—e o—0 *~—e o—0 *~—e o—0
< ’_I ID—:_I *—o—o *—o—o *—o—o

N J

Figure 5.23: Switching adjacent hooks beginning in nonadjacent rows.

3
.|
I

and h(T_:), we have lengths |h7(£)| = |h£;_:)| — 1 and |h£;2|_1| = |h££_1)| + 1. Thus in

m

the end,

|| = |hg| = (¢ = p), and |hg| = |hp| + (¢ — p),
where A}, = h]()Zq_Zp_l) and hj = h((fq_Zp_l) are the hooks remaining at the end of
the process. In addition, since the sign changes at each step and there are an odd
number of steps, we have sgn(h;)sgn(hi,) = —sgn(h,)sgn(h,). See Figure 5.23 for
an example of this process.

One may also switch two hooks which are not adjacent in the following way.
Note that by not adjacent we mean that there are nonempty hooks that begin
in rows between the rows in which the two hooks we want to switch begin. Say
h
between them. This can be done in 2m — 3 steps. Let the hooks after step j be
denoted by RO pl) ,j(j). Then at step j for 1 <5 < m —1, switch AUV and

721 i2 ? im ij

RV For m < J < 2m — 3, switch h(j;i) and h(j_l)_J. Since each switch of

1541 12m—1—j 12m—2

we want to switch h;, and h;,, such that there are m — 2 hooks h;,, hiyy... by,

two adjacent hooks gives a sign change and there are an odd number of switches

of adjacent hooks, we have

m m

[T son(hi,) = =] sgn(rC™=).

i=1 i=1

In addition, if h;; begins in row p and h;,, begins in row ¢, we have
1) = [hi | = (¢ =p) and [0 7] = [hiy] + (g — p).

An example is given in Figure 5.24.
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.
Ngd
I
3
I
3
b

Figure 5.24: Switching nonadjacent hooks.

We say that two hooks are k-switchable if they begin in rows p and ¢ such that
k divides ¢ — p, and the hook beginning in row ¢ is nonempty. If two k-switchable
hooks h; and h; are switched, then the new lengths differ from the old by multiples
of k.

Using the definition of K;&,, the expression (5.15) for m = D()) can be rewrit-

) ( " ) Y sgn(D).

ubn K1y 7IMD(A) TESRHMVA/
(w)=D(\)
K|

ten as

where SRH, \ is the set of p-brick tabloids of shape M. Thus we can interpret
this as a sum of signed objects, T' € Ops. They are p-brick tabloids of shape N
for a given partition A, such that the number of parts of g is equal to the size
of the Durfee square of A and each part of u is divisible by p. In addition, the
multinomial coefficient fills each tabloid with the integers 1,2,... ,n in such a way
that the integers increase along the hooks from top to bottom and from left to
right.

We now label the hooks in an object T in the following way. The bottom-most
hook is labeled hy. Then hq, hs,... A

i, are the hooks, in order from the bottom

of T' to the top, such that the difference between the row in which they begin and
the row in which hy begins is divisible by k. h; 41 1s then the lowest hook not yet
labeled. The hooks h; 42, hij43,... , R

i, are then the hooks, in order from bottom

to top, such that the difference between the row in which they begin and the row
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hy o—e—e—e ¢
hi e—e—e o—o’_I —eo—o

Figure 5.25: An example of the hook labeling for k = 3.

3 w(T)=232211231221

4l Tl 10] g

hy | 2] 8 |11 s(T)=152

hel 51 61 9] 12

Figure 5.26: An example of an object in Oy, and its associated words.

in which h; 41 begins is divisible by k. Continue in this manner until all of the
hooks are labeled. An example of this labeling system is given in Figure 5.25.

Now for each object T with its hooks labeled as above, we introduce two
words associated with the object. The hook word of T, w(T') is given by w(T) =
wiwy - wy, € {1,2,..., D(A)}" such that w; = j if and only if ¢ lies in h; in T
The row word of T is given by s(T') = s182--- sp(v) such that h; begins in row s;
in T'. An example of an object in Oy, and its associated words is given in Figure
5.26.

We now perform an operation called r-pairing on the hook words of the objects.

This was first introduced by Remmel and Shimozono [8]. This operation consists
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wT) =303 1 12 2013202030

[ N
dwT) =303 1122201320223 0
Figure 5.27: An example of r-pairing and d, for r = 1.

of the following steps, ignoring any letter in w(7') that is not an r or r 4 1.

1. Pair any r and r + 1 that appear in that order with no r or r 4+ 1 between
them.

2. Remove the letters paired in Step 1 and repeat until no pairs remain.

The remaining letters form a subword of the form (r + 1)?r?, called the r-unpaired
subword of w(T). If w(T) has the r-unpaired subword (r + 1)?r? and h, and h,44
begin in rows s, and s,41 in T, respectively, then define an operator d, by declaring
that in d,w(T') the r-unpaired subword of w(T') is replaced by

(r 4+ 1)atsr+1=srpptsr=sr1 - Note that d, is only defined on w(7T") if p > s,41 — s,
An example of r-pairing and d, is given in Figure 5.27. This is given for r = 1 and

the word of r-unpaired letters are circled.

Proposition 5.19. If d, is defined on a hook word w(T), then the r-unpaired

subwords of w(T) and d,w(T) occupy the same positions.

Proof. 1t is enough to show that w(T') = wiws---w, and d,w(T) = vivy---v,
have the same r-pairs at Step 1. Suppose that we have a w; = r and w; =r 41
paired in w(7T") in Step 1, that is, there are no r’s or r+ 1’s between them. If v; = r
and v; = r+ 1 in d,w(T), they will still be paired and there is no problem. So
consider what happens if one or both of them are different.

Case 1. v; = r and v; = r. In this case only v; has changed, so w; = r
must have been paired and w; = r + 1 must not have been paired in w(7T'). But
this contradicts the fact that there were no r’s between w; and w; to pair with

w; =71+ 1.
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Case 2. vi =r+1 and v; = r+1. Here, v; # w;, so w; = r+ 1 must have been
paired in w(T'), but w; = r + 1 must not have been. This is again a contradiction
since there were no r’s between w; and w; to pair with w;.

Case 3. vi = r+ 1 and v; = r. In this case, both w; and w; have changed,
therefore both must have been unpaired in w(7T'). Again this is a contradiction
since there are no r’s or r + 1’s between them to prevent pairing w; and w;.

Thus the only possibility is that w; and w; are paired in both w(T') and d,w(T),

and the two words have the same r-pairs. [ |

Let o;(r) be the number of occurrences of the letter r in the subword wqws - - - w;

of w(T') = wyws -+ - w,. We then have the following definition.

Definition 5.20. Anobject T'in Ok is hook k-lattice if o;(r+1) < 0;(r)+ 8,11 —3,
for all 1 <¢ < n and for all r such that k£ divides s,41 — s,.

Proposition 5.21. An object T is hook k-lattice if and only if the r-unpaired
subword of w(T) is (r + 1)Pr? with p < $,41 — s, for all r such that k divides

Sp41 — Sy

Proof. In the following proof, we will use the notation given above for the number
of occurrences of the letter r in a subword of w(7'). In addition, let u;(r) be the
number of letters r in the subword wyws - - - w; that are unpaired in w(7T). Fix a
given r such that k£ divides s,.; — s,. For simplicity, set ¢ = s,49 — s, — 1.

(=) Assume that w(T') is hook k-lattice. We need to prove that u,(r+1) < a.
We do this by showing by induction on ¢ that if u;(r+1) < a, then w41 (r+1) < a.
The case 1 = 1 is trivially true unless £ = 1 and @ = 0. Then for w(T') to be 1-hook
lattice, w(T') cannot begin with r 4+ 1 anyway. Now assume that u;(r + 1) < a. If
wip1 # r+1 orif this is a strict inequality, u;41(r+1) < a is trivially true, so assume
ui(r+1) =a and w41 = r+ 1. If w4y is paired, then wpq(r+1) = wi(r+1) < a.
If w;11 is not paired, we can assume that w,41(r) = 0, because if there were an
unpaired r, it would be paired with w;4;. Thus 0;11(r+1) is the sum of the number

of unpaired r+1’s (u;41(r+1)) and the number of paired r+1’s (0;41(r)). We then
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have w;41(r + 1) = 0;41(r + 1) — 0;41(r) but this is less than or equal to a by the
lattice condition. Thus we must have that if u;(r + 1) < a, then u;p1(r + 1) < a,
and ultimately, u,(r + 1) < a.

(«<=) Here we assume that u,(r + 1) < @ and show that for all ¢, o;(r +1) <
0;(r) + a. We assume this is true for ¢ and proceed by induction. Again, if « > 1,
the base case ¢ = 1 is trivial. It ¥ =1 and @ = 0, then by assumption there are no
unpaired r 4+ 1’s, 80 01(r + 1) = 0 < 01(r) + a. Now assume o;(r + 1) < o0;(r) + a.
If wipq # r,r + 1, then 0;41(r) = 0;(r) and o;41(r + 1) = 0;(r 4+ 1) so it is clear
that 0;41(r + 1) < 0i41(r) + a. If wi11 = r, then we have 0;41(r +1) = 0;(r + 1) <
0i(r)+a+1=0;41(r)+a. That leaves us with the case that w;1; = r+1 and thus
oip1(r+1)=o0i(r+1)+1 and 0;41(r) = 0;(r). If 0;(r +1) < 0;(r) + a, it is trivial
that 0;11(r + 1) < 0;41(r) + a, so consider the case in which o;(r + 1) = 0;(r) + a.
Since r 4+ 1’s can only be paired with r’s that come before them, at most o;(r) of
the r 4+ 1’s in wyws - - - w; can be paired. Thus u;(r 4+ 1) > o;(r + 1) — 0;(r) = a.
But since we are assuming that w(7') has at most ¢ unpaired r + 1’s, we must
have u;(r + 1) = a and w;(r) = 0. Because of this, there are no r’s to pair
wip1 = r + 1 with, so we must have u;41(r + 1) = a + 1, but this contradicts our
assumption. Hence if w;11 = r 4+ 1, we must have o;(r + 1) < 0;(r) + a and hence

that 0;11(r + 1) < 0j41(r) + a. [ ]
Given all this, we may now state the following theorem.

Theorem 5.22. Gliven a partition A\ = n,

Cg()x),xf = Z ! [‘;i/ = Z Z sgn(T),
s D))

K1y
Hw)=D(}) Hw)=D(})
k| K|

where SRHSK, is the set of special rim hook tabloids of shape N and type p which
are hook k-lattice.

Proof. We perform the following involution # on the objects in Oys. For a given
object T, consider w(T') from left to right and look for the first violation of the

hook k-lattice condition.
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e If there is no violation, then T' is hook k-lattice and 6(T') = T.

o If there is a violation, let + 1 be the first letter to violate the hook k-lattice
condition. Then by Proposition 5.21, there are at least s,;1 — s, r-unpaired
r+ s in w(T) and k divides s,41 — s,. Then set §(T') to be the object with
s(0(T)) = s(T) and w(O(T)) = d,w(T).

First, we show that this is a well-defined involution. If 7" is hook k-lattice, this
is trivial, so assume not. Then there is a least 4+ 1 such that there are at leftmost
Sp41— 8, r-unpaired (r+1)’s in w(7T') and k divides s,41 —s,. By the first condition,
d, is defined for w(T'). By Proposition 5.19, the r-unpaired subwords of w(7') and
d,w(T) occupy the same positions, so the first violation of the lattice condition in
d,w(T) will be in the same position as that of w(7'). Moreover, if the r-unpaired
subword of w(T') is (r4 1), then that of d,w(T') is (r4 1)7Tsr1=srpptsr=sri1 and
then that of d,d,w(T) is (r + 1)p+5r—5r+1—(5r+1—5r)rq+5r+1—5r+(5r—5r+1) = (r 4 1)r1,
showing that # is an involution. That the involution is sign-changing can be seen
in the following way. We have s(6(T)) = s(T') so the hooks in 6(T') begin in the
same rows as the hooks in T' do. However, the lengths of the hooks change. Let
P(r) be the number of r-pairs in w(7T') and therefore in d,w(T). Then the length
of the hook h, in T"is |h,| = P(r) 4+ ¢ but the length of the corresponding hook
B! in 6(T) is |hl| = P(r) + p + $» — $41. Similarly, the lengths of the hooks
hpyq and Al 4 are |h,4q| = P(r) + ¢ and |k, | = P(r) + p+ $,41 — 5,. We thus
have |h)| = [hyy1| — (8,41 — 5,) and |h)_ ;| = |h,| + (5,41 — 5,), the same change
of lengths as in the switching of the hooks h, and h,y;. In addition, given the
lengths of some hooks, the rows in which each of them must begin, and the cells
they must cover, there is only one way to place the hooks. Thus §(7T') has the same
rim hook configuration as the result of switching h, and h,y; in T, and therefore
sgn(0(T)) = —sgn(T). The fixed points of the involution are then those objects
T which are hook k-lattice, completing the proof. [ |

In order to state our expressions for C,, v and CT(:)N, we need the language of

rborder rim hook tabloids and hook shifting.
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Figure 5.28: An example of hook shifting.

Hook Shifting, introduced by White [11], is a method of switching a hook from
the inside of a tabloid to the northeastern border or from the border to the inside of
the tabloid. If beginning from the inside, the hook is shifted upward and outward
at a diagonal. Meanwhile, another hook is shifted down to occupy the cells that
the shifted hook occupied. It is easiest to understand this procedure through an
example, such as that given in Figure 5.28, where the bold hook is shifted to the

outside.

An r-border rim hook tabloid of shape v, h, = (hy, hs,... , hy), is defined in
the following way. Place r hooks hy, ko, ..., h, into a Ferrers’ diagram of shape v
such that

® /1 is a rim hook of the Ferrers’ diagram of shape v, and for 1 <2 <r, h;isa
rim hook of the Ferrers’ diagram of shape v — (hy, ha, ... , hi_1), that is, the
diagram of the shape of v with the hooks hy, A, ..., h;_1 removed.

e h; begins above h; for ¢ < j the first cell of h; is northwest of the first cell of
h;.

An example of a 4-border rim hook tabloid of shape (1%, 3% 4, 6%) is given in Figure
5.29.

Let |h;| be the length of the hook h;, that is the number of cells it occupies.
Define the sign of a hook as for any rim hook, that is, sgn(h;) = (=1)"*)=! where
r(h;) is the number of rows the hook occupies. Then the sign of the r-border rim

hook tabloid is sgn(H,) = [[i—; sgn(h;).
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Figure 5.29: An example of a 4-border rim hook tabloid of shape (12,3, 4, 6%).

Let B} be the set of all r-border rim hook tabloids of shape v. Let v be the
shape v — (hy, ha, ..., h,). Then set sh(H,) = v/vg. This is the shape formed
by the cells in which the hooks lie. In the following, the shape of the r-border
rim hook tabloid will correspond to the shape of a()\) for some partition A. Let
)\—Sh(Ha(/\)) be the Ferrers” diagram of the shape which remains after the r-border
rim hooks are removed from a(\).

We are now ready to give our expressions for C,, v and CT(:A,. The expression

for Cy, v is due to Beck and a proof can be found in [1].

Theorem 5.23. Lel A be a partition of n, D(X) < m < D(X) + apqy, and r =
m — D(X). Then

n
Cm,/\/ = Z Sgn(Ha(/\))<|h1| |hT|>

HQ(A):(hl s shr )EBY,

(=) O=ShHa()] 13- a0))) /5O =R (Haa))

and

C(k),: sqn(H, ( " )
m,A Z g ( (/\)) |h1|,...,|hT|

Ha(A):(h1,...,hr)eB£
x>, D> sgn(T), (5.16)

k|hi
wh|v| TESRH(k),
l(w)=D(v) w,v
k|w;
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where SRHLITZ, is the set of special rim hook tabloids of shape v' and type w which
are hook k-lattice.

Proof. We will prove (5.16). To do this, we interpret the expressions in (5.15) and
(5.16) as two sets of signed objects, then give a bijection between the two sets to
show that the expressions are equal.

First, we can express Cﬁi&, as

Y E (e

ubn TGSRHM,A’
H(p)=m
K|

where SRH, ) is the set of special rim hook tabloids of shape A" and type p. We
interpret the right hand side of the above equation as a sum of signed objects
0 € Oz4. These objects are special rim hook tabloids of shape A" and type p such
that I(pr) = m and each part of y is divisible by k. The binomial coefficient fills
the cells of the objects with the integers 1,2,... n such that each integer appears
exactly once, and the integers increase along each hook, from top to bottom and
from left to right. Each hook is given a sign sgn(h) = (—=1)"®=1 where (%) is the
number of rows occupied by the hook h. The sign of an object o is then defined
by sgn(o) = [[,ec,sgn(h). Note that this is the same as the sign of a rim hook
tabloid. Thus we can see that

>, > (Ml,-i Mm)Sgn(T): > sgn(o).

ubn TGSRHM,A/ 0€O 4
H(p)=m
K|

We now consider the right hand side of the equation (5.16), letting v be the
shape A — H (). By Theorem 5.22, this expression is equal to

n
Z sgn(Ha(/\))<|h1|,.-- 7|h7“|>

HQ(A):(hl yeos ,hr)EBlT,
k|hi

< 3y (wh”h" >5gn(T).

W
wFlv| TESRH, »#D()
l(w)=D(v)

k|w;
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______

Figure 5.30: An example of an object in O,p.

We interpret this as a sum of signed objects 0 € Os;p. The objects are r-border
rim hook tabloids H,\) of shape a()) such that each hook has length divisible by
k, and special rim hook tabloids of shape v’ such that the special rim hook tabloid
is filled with D(v) = D(X) hooks each of which has length divisible by k. The
shapes are joined into a single object as shown in Figure 5.30.

The multinomial coeflicient <|h1| ” |hr|> fills the the r-border rim hooks with

integers from 1,2,... ,n such that the integers increase along the hooks, it also
leaves n—|hq|—|ha|—- - -—]|h,| = |V/| integers unused. The multinomial coeffiecient
<W1 m'”J}D( )) then fills the hooks of the special rim hook tabloid with the remaining

integers. The sign of an object is defined by sgn(o) = [], ¢, sgn(h) where the sign
of a hook is sgn(h) = (—=1)"" and r(h) is the number of rows occupied by the

hook h. Thus it is clear that we can write

n
2 59”<H““>><|h1|,...,|hT|>

HQ(A):(hl yeos ,hr)EBlT,
k|hi

< 3 Y (wh”|"’| >39n(T)zngn(0).

wFlv| TESRH, »“D(v) 0€0. 5
l(w)=D(v)
k|w;
We now give a bijection between the two sets of signed objects O;4 and O;p.

Consider a € O,4. Draw a diagonal line from the lower right corner of a())
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in the Ferrers diagram of )| extending down to the left. Then there are exactly
r = [(p) — D(A) hooks that lie entirely above the diagonal in a. To see this, note
that exactly I(a())) hooks cross the diagonal and at most D(A) — [(a())) hooks
start in the first column below the diagonal. All of these r hooks can be shifted
to the border of a(A). We order these hooks from bottom to top according to the
row in which the hooks start. The hook that starts in the topmost cell is denoted
by hy, the next lowest is hg, and so on. First, we shift h; to the border of a()).
Then, shift hs to the border of a(X) — hq, and so on. Because we shift the hooks
along diagonals, the relative positions of the hooks will not change. We clearly
obtain an object in O,p.

Now, consider an object b € O,g. Label the r-border rim hooks from top to
bottom, such that Ay is the topmost hook and h, is the bottommost. First shift A,
down and to the left so that it begins in the first column. Then shift ~,_; in the
same way, and so on. An example of the bijection is given in Figure 5.31. In [1],
Beck shows that since the movement of the hooks is along diagonals, no border rim
hook begins on the dame diagonal as one of the D(A) = D(v) special rim hooks in
the tabloid of shape v’ Because of considerations of space, we do not include the

proof here.

5.4.2 ¢-analogs for the Schur Basis

It is also possible to give an expression for the image of the Schur basis under

EW. The results follow.

Theorem 5.24. Let &y, be the homomorphism defined in Definition 5.5. If A n,
then

3B (s (X +Y +2)) = Y ¢ ryy(0), (5.17)
o€C388y,
3 ]l (sn(X + eV +22)) = Y elo)g™ Drwa(o), (5.18)

UGOS§Sn
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1 1 1 1
1 e 1 1 1
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Figure 5.31: An example of the bijection between O,4 and O;p.

and
3 ) (sa(X + &Y +eZ)) = Y e(o)g™ " Drwa(o), (5.19)
UGOS§Sn
where
TW/\ Z[X =1 desWM
ubn

invw (o) is the number of C3§S,-inversions of o, and desy, (o) is the number of

(58S, p-descents of o.

Proof. Begin with the following expression, given in [7].
sv=Y K \hy
ubn

To prove (5.17), multiply by 3"[n]! and apply &y to get

3w (sn(X +Y + 7)) = Y KAw(hu(X +Y + 7))
ubn
— Z [(M_j\ Z qinvw(cr)xdeswyu(cr)
ubn o€C388y,

_ Z qinUW(U)TW,/\(O-)-

UGOS§Sn
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The proofs of (5.18) and (5.19) are similar. [

5.5 &y Applied to Other Bases of Ay,

Here, for the sake of completeness, we determine the images of the monomial
and forgotten bases by writing them in terms of the power basis and then applying

Ew. For example, using (4.29) we get

3w (mA(X +Y + Z)m (X 4+ €Y + 62Z)ml,(X + %Y + €Z))
= Z Z (_1)l(a)+l(ﬁ)+l(w)—l(k)—l(u)—l(v)62l“(ﬁ)+l”(ﬁ)+l”(w)+2l"(w)w(f)

(a,ﬁ,’y)l—n fEf;‘:g:v

37n!

2R 3%

X

Ew (pa(X)ps(Y)py(2)).

A similar approach is taken with the forgotten basis. We then have the following

theorem.

Theorem 5.25. If (A, p,v) F n, then

3w (mA(X +Y + Z)m (X 4+ €Y + ezZ)ml,(X + Y + 7)) =
= YT (1) O ) SO GO )y )

O

X Z glew ()

7€C(a,8,7)

and

3w (X +Y + 2)fu(X + Y + EXD)[(X + Y +e2)) =
Z Z (—1)" 1= =1w) 2HEHEHE 20 g ) Z plew (@)

(Bmbn peFimy 7€Ca,p,7)

5.6 The Permutation Enumeration of ()85,

Here we will indicate how the previous results for (385, can be extended to

arbitrary wreath products C1§5,. We begin by defining a number of statistics
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on elements of C§S,. If 0 = oy0y---0, € C}895,, the sign of the element o; is
denoted €(o;) and the sign of ¢ is the product (o) = [[i_; €(0;). The number of
Cr8S,-descents of o is given by

desw (o) =[{t:1<i<n—1,¢e(01) = €(0i41),0: > Tip1}].
Given a partition A = (Aq, Ay,..., A;), the number of C}§5, A-descents, denoted
desw, \(0) is defined in the following way. Write o in one-line notation and break it
into segments of lengths Ay, Ay,... , A;. Then count only the C5§5,,-descents which
occur with ¢z and ¢ + 1 in the same segment. The number of C1§5, -inversions is
given by
invw, (o) = [{(¢,7): 1 <i <y <n,o; > 0},

where , is the partial order

l=el=---=f ' <p2=2=-- =2« <prn=en=---="n.

The number of C1§5,, -descedances of the element o is defined on the cycles of o.

Write o in cycle notation as

0 =(01,,01,, 01, (02,0055 02 ) ( Ty Oy o oo Oy )

Then the number of C}§5,,-descadences of o is given by

k
dewk(o-) = Z(H] 1 S] S ZZ - 176(0-i]) = G(Uij+1)70-ij >T O-ij+1}|

=1
+ x(0i, > 0i)x(€(oy,) = e(0y,))),
where y(statement) is 1 if the statement is true and 0 if it is false.

We also need definitions of analogs of ¢ and ¢ for C},§S,,. These are given below.

Definition 5.26. The homomorphism &w, : Aw, — Ql¢][z] is defined on the

elementary basis by

fwk(en(eml)((l) 4. 6m~kx(k))) =
6m~1(6m~1 _ 6m~1x)n—1 N 6m~k(6m~k _ 6m~kx)n—1
kn!

k.

for eachm =1,2,...,
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Definition 5.27. The homomorphism &y, : Ay, — Qlg][€][2] is defined on the

elementary basis by

i (en( X0 X 1) =

n

q(2) <6m.1(6m.1 o 6m.lx)n—l 4oy em.k(em.k . em,kx)n_1>
k™ [n]!

for eachm =1,2,... k.

5.6.1 Ay, -Homogeneous Bases Under &y,

When &, and Ewk are applied to the homogeneous basis, the following results

are obtained.

Theorem 5.28. Let {w, and Ewk be the homomorphisms defined in Definitions
5.26 and 5.27. Then form=1,2,... ,k, we have

Frnléw, (ha (€' XD g e XW)) = 3 ¢(o)mateom (), (5.20)
ceCr8Sy

Fntéw, (ha(e™ XM 4o em X W)y = N (o) mateomn () (5.21)
c€Cr8Sy,

knn'ng(hn(ele(l) N Eka(k))) — Z 6(0_)mxdeswk (U)qinvwk (cr)7 (522)

060k§5n
and

knn’ng(h/\(ele(l) +oe éka(k))) _ Z 6(0_)mxdeswk,>\(cr)qmvwk (cr)7
c€eC85n

(5.23)
where desw, (o), desw, \(0), and invw, (o) are the number of C§S,,-descents, the

number of C85, A-descents, and the number of Ci8S,, inversions of o, respectively.

We will sketch the proof of (5.20). The variations in the proof necessary to prove
(5.21), (5.22), and (5.23) are similar to the variations in the proof of Theorem 5.2
necessary to prove (5.1), (5.2), (5.3), (5.4), (5.5), and Theorem 5.6.
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Proof. We begin with the relation

he =3 (1B, (e,

ubn

Multiply by £"n! and apply {w, to obtain

k& (b (™1 XM o ek X (R)Y)

l(“) m-1/, m-1 m-1 i—1 m-k({ m-k m-k i—1
o . et — ety p @R (MR — )
= Z(_l) (M)B“’(”)k n! H k“’ﬂi!
=1

:_Z > (/m . .é,ﬂl(u)>

pbn TEB, (n)

ubn

I(r)
X H <6m'1(6m'1:1; i L B Ry P em'k)“"_1> . (h.24)
=1

We interpret this as a sum of signed, weighted objects o € Oy, similar to
those in the proof of Theorem 5.2. They are p-brick tabloids of shape (n), filled
with the integers 1,2,... ,n such that each integer is used exactly once and the
integers decrease within each brick. Each brick is designated as an i-brick for some

t=1,2,... k. Each cell ¢ is weighted in the following way.

, ¢ is at the end of an 2-brick,

—c™ or ¢™ax, cis elsewhere in an ¢-brick.

Define the weight of an object o by w(o) = [].c, w(c). Then we can write the
expression in (5.24) as Y . w(o).
We perform an involution on the objects. Traverse the row from left to right.

At the first occurrence of one of the following, perform the appropriate operation.

o If a cell ¢ has weight —e™, split the brick after ¢ and change the weight of ¢

from —e™ to 4™,

o If there is a decrease between the integer filling of the last cell ¢ of a brick
and the first cell of the next brick and both are ¢-bricks for some ¢, join the

two bricks together and change the weight of ¢ from +¢™ to —e™.
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The fixed points of the involution are p-brick tabloids of shape (n) filled with the
integers 1,2,... ,n such that the integers decrease within each brick and increase
between consecutive bricks of the same type. Each brick is designated as an z-brick

for some ¢ =1,2,... k. Each cell is weighted by the following

€™, cis at the end of an i-brick,

w(e) =

mi

€™x., cis elsewhere in an :-brick.

Y

Reading left to right, we consider the filling to be an element of C;§5,, with each
cell in an i-brick corresponding to an element with sign ¢, the descents of the
element have an z-weight and cells that do not correspond to a descent do not
have an z-weight. Thus the z-weights count the C}§5,-descents. In addition, each
cell in an 7-brick has a sign of ¢™* = (¢')™. The sign of the element is obtained by
contributing €' for each i-element. Thus the sign counted here is the m* power of

the sign of the element. This completes the proof of (5.20). [

5.6.2 Ay -Power Symmetric Functions Under {yp,

When &, is applied to the power basis, the following result is obtained.

Theorem 5.29. Let &w, be the homomorphism defined in Definition 5.26. If
AW AR E o, then
k™n!

ZA) T AN

G (a(XD) - opy (X)) = Y plemdo),

T€CL) Ay

where Ciyay, .\ is the conjugacy class of Cy85, indezed by (AW AR and

Y

dew, (o) is the number of Ci§5,-descedances of o.

In order to prove Theorem 5.29, we need the following lemma regarding the
transition matrix between the basis p(;)(X(l)) . -p&k)(X(k)) and the basis
eA(l)(el'lX(l) _I_ e _I_ elkX(k)) e eA(k)(ele(l) _I_ e _I_ eka(k))
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Lemma 5.30. If (A", ... XB) (o) o) n, then

(_1)n_1(a(1))_..._1(a(k))

(Sh iy —s? (009
JLO) 4 I(AR))

P (XD)e i (XW) = Y-

KOG
FEF o k)

« w(f)ea(l)(el'lX(l) N 61~k)((k)) . ea(k)(gvl)((l) N 6k~k)((k))7
where la(t)()\(s)) is the number of a9 -rows that appear in A\,

Proof. We begin with the expression

P = Z(—l)n_l(“)w(Bm(n))eu.

ubn

Fort =1,2,... ,k, we then have

ﬁt.lpn(X(l)) _I_ . e _I_ ﬁtkpn(X(k)) — pn(et'lX(l) _I_ . e _I_ ﬁth(k)) =
Z (—1)n_l(a(t))w(Ba(t)7(n))ea(t)(Gt.lX(l) —|— . —|— Gth(k))

a(thn

Given this, for each s = 1,2,... |k, we have

e—stpn(eth(l) N Gth(k))

]~

kpn(x(S)) =

=1

]~

6_St(—1)n_l(cy(t))U)(Ba<t>,(n))eam(ﬁt'lx(l) R

t

1 o(DFn

We interpret this as a sum of signed, weighted objects. We have diagrams
of shape A % ... % A\(*) such that each row is filled with all a(V-bricks for some
1 =1,2,... . k. We use the above expression to weight the bricks of the tabloid.
The coefficient of ea(l)(el'lX(l) 4+ 4+ elkX(k)) e ea(k)(ele(l) 4+ 4+ eka(k)) in
IO +-HOE) (XY p (X R s given by

(0" > W),

KOG
O
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where

Wi(f) =[] we(®)

bef
is the product of the weights of the bricks, and

—e=*tb|, bis at the end of an aY-row in A,
wi(b) =

-1, otherwise.

Writing the above coefficient in terms of the usual weight gives

1y YO @) 5y st ()
(1) (1) ¢ w(f),

KOG
O

where la(t)()\(s)) is the number of a(®-rows appearing in A®). This completes the

proof of Lemma 5.30. |

We are now ready to prove Theorem 5.29.

k™n!

ZA(1) T A(R)

Proof. We multiply the expression given in Lemma 5.30 by and apply

&w, to obtain the following expression.
k™n!

b (P (X D) - (X)) =
2y 2

k”n!(—1)”_l(a(1))_"'_l(a(k))

Z Z LA 4 I(AR))

(00 el a(R) AW AW

(2t im —Sfla(t)(A(S))w(f)

A NEP PGS
E 1(alm™) (m) (m)
( ) 6m~1(6m~1 _ Gm'll')ai -1 N 6m~k(6m~k _ em'kx)o‘i -1
<11 11
(m) (m)
m=1 =1 kal ai ’
This in turn is equal to
DD ;
1O+t I (AR .
(@), ali)n e pall), . alk) FIOED O 2000 - 230
)\(1)*~~~*)\(k)
() (s n
Yk oy —st™ (M)
X et w)l o m O
1 9+ l(a(l))7... I8 S I l(oz(k))
o L(alm™)

% H H <6m~1(6m~1x o 6m~1)agm)—1 N Gm.k(ﬁm.kl' o 6m~k>agm)—1> ]
m=1 =1
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If b,,; is the brick in f corresponding to ozgm), define

(m) aﬁm) —1, b, 1s at the end of a row in f,
T aﬁm), otherwise.
Then set &) (f) = (olgm), d(zm), o ,&;ng))). We may then rewrite the above as
> > kl(/\(l))+~~~-|—l(/\(k1))z — (E oy —stta ()
(D, ,a(F)n fEf;l((f));ﬁ;iEZ; A ACR)
1 e — k

k [(a(m)

)
% H H <6m~1(6m~1x o 6m~1)agm)—1 N Gm.k(ﬁm.kl' o 6m~k>agm)—1>
m=1 =1

We interpret the above expression as a sum of signed, weighted objects 0 € Oy,
They are elements of .7:;((11))*’:::*’°;EZ;, filled with the integers 1,2, ... ,n, such that each
integer is used exactly once, the numbers decrease within each brick, and the
smallest number in each row appears at the end of the row. In addition, one
cell in each row is distinguished. Each brick is designated as an ¢-brick for some

t=1,2,..., k. Fach cell is given a weight according to the following rule. If ¢ is

a cell in an i-brick in an a(™-row, then

emi=s) ¢ is at the end of a row in A\(¥),
w(e) = €, ¢ is at the end of a brick but not a row,
—™ or €™z, otherwise.

Y

We wish to ignore the distinguished cell and the order of the rows with in each of
A AR g0 we divide by 2y - 2y

We perform the following involution on the objects. Traverse the diagram,
considering first A(Y, then A, and so on, and in each part, considering the rows
from top to bottom and within each row, considering the cells from left to right.
Look for the first occurrence of one of the following and perform the appropriate

operation.
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o If a cell ¢ has weight —e™, divide the brick after ¢ and change the weight of

¢ from —e™ to 4™,

o If there is a decrease from the integer filling of the last cell ¢ in a brick to that
of the filling of the first cell in the next brick and both bricks are :-bricks for
some ¢ and lie in the same row, join the two bricks together and change the

weight of ¢ from +emt fo —e™t

The involution has fixed points with the following properties. They are elements

of f-oz(l),...,oz(k)

ok filled with the integers 1,2,... ,n such that the integers decrease

within each brick and increase between consecutive bricks of the same type, with
the smallest number in each row appearing at the end. The weight of a cell ¢ in

an i-brick in an o™-row is given by

¢™=9) ¢ s at the end of a row in A(®),

w(c) = ¢ ¢m ¢ is at the end of a brick but not a row,

otherwise.

Define a k-volution to be a function from a set S to itself such that for any
s €S, f*(s) = s. We now perform a k-volution on the fixed points of the previous

m+1) 1ow. In

involution. For m =1,2,... ,k — 1, change each a{™-row into an a!
addition, change each a®-row into an a(M-row. All of this is to be done with the
appropriate changes of weight. Apply this k-volution & times.

Consider an a-row in one of the objects, and say that its weight is w. Let b; be

the number of cells that appear in ¢-bricks in the row. If we assume that the row

lies in A®®), then when the row is an a{"™-row, its weight can be written as

k 7
e—ms—I—X:i:1 mzblw‘

The sum of these weights is

k
m=1
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If Ele ib; = s (mod k), then this sum is kw. Otherwise, the sum is 0. Thus we
are only left with rows in A with Ele ib; = s (mod k). It no longer matters
what type of row we have, since it can be considered as an a¥)-row, so we must
divide by KOM)H-HO®),

Our objects are now diagrams of shape A x ...+ A*) filled with bricks of
lengths the parts of oV, ... al®. Each brick is designated as an i-brick for some
1. The cells are filled with the integers 1,2,... ,n such that each integer is used
exactly once, the smallest integer in each row appears at the end of the row, the
integers decrease within each brick, and they increase between consecutive bricks
of the same type in the same row. The cells are weighted according to the following

rule.

1, «c¢is at the end of a brick,

w(e) = 7

x, otherwise.

Interpret each row as a cycle in a C3§5, element, where if a is the filling of a
cell in an i-brick, then it corresponds to ¢'a in the C}§S, cycle. Within each
cycle, decreases between elements of the same type are weighted by z. All other
transitions are weighted by 1. Note that there can never be a decrease from the
last cell of the row to the first cell, since the last cell is filled with the smallest
integer in the row. Thus the z-weight counts the decedences of the cycle. In A(),
we have cycles with Ele ib; = s (mod k), so the sign of the cycle is €°. This holds
for each s, so the element consisting of the cycles formed by all of the rows belongs

to the conjugacy class indexed by (A, ... A()), [ |



Conclusion

We have extended the results of Brenti, Beck and Remmel to analogous results
for the wreath products C}§5,. There are, however, many questions remaining
which are related to the problems discussed in this text and which might be solved
using combinatorial methods. First of all, we would like to find a more satisfactory
expression for the image of s)(X + €Y +¢27) and s, (X +€*+€Z) under {w, and we
would like to determine if there are other uses for the involution we used to switch
hooks while preserving restricions on their lengths. In addition, the methods used
here could perhaps be extended to other groups, such as the alternating group, the
dihedral group, or other Coxeter groups. If they can be extended, one must find
the best way to define statistics on elements of the groups that may less resemble
permutations than the elements of the wreath products studied here. There also
seems to be a connection between the type of permutation enumeration studied
here and some classical identities regarding permutation statistics which deserves
further study. We hope to pursue the solutions to some of these problems in the

future.
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Appendix A

The Permutation Enumeration of
(385, for Another Choice of
Ordering

Here we state without proof the definitions and results for an ordering on the
letters that make up elements of (385, which is different than that in Chapter 5.
We define a partial ordering, ©’, on the letters by the following.

l<eg2<gr - <o n

_ _ <@/ﬁ<@/n—1<@/---<@/f
l<og2<e - <ol

We will also make use of the following partial order that was also used in Chapter

3.

I
||

Il
N

1=1 2

n

T<r2 <r---<rn

We use these partial orders to define statistics on elements of C3§5,. The number

of modified (585, -descents is given by
deswi(o)={i:1<i<n—1,0; >0 i1} + x(e(0,) = €%).

If an element o0 = 0105+ 0, is divided into segments of lengths Ay, Ao, ... Ay

for some A = n, then the number of modified C3§5,, A-descents is the number of

161
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modified descents, desy », which occur with both ¢ and 41 in the same segment.

The number of modified (585, -inversions is given by
invw (o) = tnow (o) = [{(4,j): 1 <i <y <n,o; > gj}].

If we write o in cyclic form as
0 = (01,0155 01, W02, 02950 02 )+ (Okyy Oy - - - ,O'klk), then the number
of modified (545, -descedances is given by

k
deW/(a) = Z <|{] 01 S] S lz — 1,0'2'] > O'Z'J+1}| + X(Uili >er 0'2'1)> .

=1
We define modified versions of &y and &gy as follows.

Definition A.1. Define the homomorphism &y @ Ay, — Q[x] on the elemen-

tary basis by

1—2)" '+ (1 —a)" ' +a(z—1)"""

3!

fwl(en(X + Y + Z)) =

Y

(1 — )"t 4 e(e — ex)" !t 4 a(fax — )t

37!

Ewr(en(X + €Y + 62Z)) =

2
and

— :1;)”_1 + 62(62 — 62:1;)”_1 + ex(ex — 6)”_1

3!

Ewi(en(X + Y +eZ)) = a

Definition A.2. Define the homomorphism &y : Aw, — (Qlg])[z] on the ele-
mentary basis by

n

(=) (1 =) (e — 1))

37!

Epilen X +Y +7) =

Y

n

g (1= 2)" ' 4 e — )t + Ea(e — &)Y

37!

EW,(en(X + Y + 62Z) =

Y

and

n

q(2) (1 —a) ' 4 (e — a)" ! + ex(ex — )" )
3nn! :

EW,(eH(X + Y + €)=
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We are now ready to state the results for this modified version.

When &y is applied to the homogeneous basis we have the following. Note
that here, A F n.

3w (h (X +Y + 7)) = Z leswr(9)

UGOS§Sn

3nn’€W/(hn(X —I— 6Y —I— 62Z)) = Z e(g)xdesW’(g)‘

UGOS§Sn

Fulewi(ha(X +EY +eZ) = 3 oyt

UGOS§Sn

Il (X +Y +2))= Y aleowal,

UGOS§Sn

Fnlew (X +eY +E2)) = Y eo)eteowa),

UGOS§Sn
3nn'€W/(h/\(X + ety -+ GZ)) = Z e(g)xdeswm(g)_
UGOS§Sn
For the g-analogs, if we apply &y to the homogeneous basis, the results are as

follows. Again, A F n.

3n [n]'gw/(hn(X —|— Y —|— Z)) = Z xdeSW’(g)qinUW/(g)‘

UGOS§Sn

3n [n]’gw/(hn(X ‘I’ 6Y -I— 62Z)) = Z e(g)xdesW’(g)qinUW/(g)‘

UGOS§Sn

3n [n]’gw,(hn(X —|— 62Y —|— GZ)) = Z e(g)xdesW’(g)qinUW’(g)‘

UGOS§Sn

3 )y (a(X +Y +2)) = Y aterwaldgnmw(e),

UGOS§Sn

3n [n]’gw/(h/\(X ‘I’ 6Y —I‘ 62Z)) = Z e(g)xdesW’,A(g)qinUW’(g)‘

UGOS§Sn

3n[n]'gW/(h/\(X T 62Y T GZ)) _ Z G(U)deSW’,A(U)qinUW’(U)‘

UGOS§Sn



164

When &y is applied to the power basis the result is

3"n! o
Ewi(pa(X)pu(Vp(2)) = Y atow(@),
e €00 )

For the g-analog, when £y is applied to the power basis, the result is

3" [n]1w (A (X)pu(Y)pu(2)) =
1))
Z xdeSW/,()\UMUD)(U)qinUW/(U) H <x1—ti(0) <xt,‘(cr) . (l’ o 1)251(0)))

UGCS§SW(A7M7V) =1
1(v)

e(on)=1,¢
I(u)

> H <x1—ui(cr) <xui(cr) . (l’ . 1)u,(0)>> <x1—vi(cr) <xvi(cr) . (l’ . 1)1}1(0)>>
=1 =1

I(A)
+ Z xdeSW/,()\UMUD)(U)_lqanW/(U) H <l’ T ((2@(0’) T 1)1, o 1) (1 _ x)ti(0)>
1

c€C388n (A1) ¢
e(crn):e2

()
X H (z 4 (2ui(o) + D — 1) (1 — 2)“()

I(v

1(_[) (¢ + ((2vi(o) + D = 1) (1 = 2)"1) |

i=1
where (585, (), i1, ) is the set of all ¢ = 0y, 09,...,0, € (385, such that if o is
broken up into segments of lengths A1, Ao, .o Moy, in, fras o5 i,
Vi, V2. ..y Vi), in that order, then each segment corresponding to a part of A has
total sign 1, each segment corresponding to a part of p has total sign €, and each
segment corresponding to a part of v has total sign €*, and where ¢;(c), u;(c), and
v;(0) denote the lengths of the cofinal decreasing sequence of elements of the same

type in the segment of o corresponding to A;, p;, and v;, respectively.
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