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ABSTRACT OF THE DISSERTATION

The Combinatorics of the Permutation Enumeration of Wreath

Products between Cyclic and Symmetric Groups

by

Jennifer D. Wagner

Doctor of Philosophy in Mathematics

University of California San Diego, 2000

Professor Je�rey Remmel, Chair

Brenti introduced a homomorphism � : � ! Q(x) de�ned on the the elemen-

tary symmetric functions by

�(ek(X)) =
(1� x)k

k!
;

where � is the space of homogeneous polynomials in an in�nite number of variables

X = (x1; x2; : : : ) which are constant under all permutations of these variables.

He proved that the homomorphism � has the remarkable property that when it

is applied to a homogeneous symmetric function hk(X), the result is the well-

known Eulerian polynomial, which is also the generating function for the number

of descents of a permutation. In addition, if � is applied to a power symmetric

function, the result is a generating function for another permutation statistic.

Beck and Remmel used combinatorial interpretations of the transition matrices

between bases of � to give combinatorial proofs of these and other related identities,

including q-analogs. In addition, they used these combinatorial methods to develop

an analog of Brenti's permutation enumeration for Bn, the hyperoctahedral group

consisting of signed permutations.

In the dissertation we extend Brenti, Beck and Remmel's results to wreath

xiii



products CkxSn between cyclic and symmetric groups, which can be considered as

groups of permutations signed with kth roots of unity.

The key steps in our extension to CkxSn include the following.

� We develop the representation theory of CkxSn in an appropriate way, includ-

ing the de�nition of a characteristic map from the class functions on CkxSn

to a space of symmetric functions, and an extension of lambda-ring notation

to take into account the complex signs.

� We determine combinatorial interpretations of the transition matrices be-

tween bases of the appropriate space.

� We de�ne appropriate statistics on the elements or CkxSn. Since there are

a number of ways to de�ne such statistics, we are forced to choose among

several possible de�nitions.

� We use combinatorial methods to de�ne an analog of �, which when applied

to certain basis elements, gives the desired generating functions on elements

of CkxSn.

� We give combinatorial proofs of the desired identities. The proofs include

interpretation of sums in terms of combinatorial objects, and the performance

of involutions on the objects.

xiv



Introduction

In [3], Brenti introduced a homomorphism from the symmetric functions to

polynomials of one variable over the rationals which, when applied to speci�c bases

of the symmetric functions, gives generating functions for statistics on elements of

Sn. This homomorphism, � : � �! Q[x], is de�ned on the elementary symmetric

functions as

�(en) =
(1 � x)n�1

n!
:

Brenti used algebraic methods to prove results such as the following.

n!�(hn) =
X
�2Sn

xdes(�);

where des(�) is the number of descents of the permutation �, and

n!

z�
�(p�) =

X
�2Sn(�)

xe(�);

where e(�) is the number of excedances of � and Sn(�) is the conjugacy class of

Sn indexed by �.

Beck and Remmel [2] gave combinatorial proofs of these and other related

results, and gave q-analogs. Beck [1] then de�ned a similar map on a space of

symmetric functions associated to Bn, and proved similar results. It is important

to note that Beck's results for Bn and the q-analogs for both cases were possible

only through understanding the combinatorial proofs for Sn.

In this text, we �rst state Beck and Remmel's results for Sn and Bn, then

extend their ideas to determine similar results for wreath products CkxSn between

1



2

cyclic and symmetric groups. In order to de�ne the symmetric functions associated

with CkxSn, we must understand its representation theory. This is developed in

Chapter 3, and uses the notation of extended �-ring notation that is developed

in Chapter 2. The combinatorial methods used in the permutation enumeration

proofs depend on combinatorial interpretations of the transition matrices between

bases of these symmetric functions, which are developed in Chapter 4. Finally, we

develop the analog of Brenti, Beck and Remmel's results in Chapter 5.



Chapter 1

Permutation Enumeration of Sn

and Bn

In this chapter, we will review the results of Brenti [3], Beck and Remmel [1],

[2], which are the motivation for this work. We begin with some notation and

de�nitions, then state most of the results, giving a few proofs to demonstrate Beck

and Remmel's methods.

1.1 Preliminaries

Here we will give some notation and de�nitions which we will use in this chapter.

A partition � of a positive integer n is a sequence of positive integers � =

(�1; �2; : : : ; �l), with �1 � �2 � � � � � �l, such that �1 + �2 + � � � + �l = n. If �

is a partition of n, we write � ` n. A partition can be represented as a Ferrers'

diagram, F�, which consists of left-justi�ed rows of squares such that the rows, from

top to bottom, have �1; �2; : : : ; �l squares, respectively. The conjugate partition

�0 is the partition whose Ferrers' diagram is the reection of F� about the diagonal

that extends northeast from the lower left corner. The Ferrers' diagrams F(1;2;2;3;5)

and F(1;2;2;3;5)0 are given in Figure 1.1.

A tableau of shape � is a �lling of F� with positive integers such that each cell

3
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F(1;2;2;3;5) F(1;2;2;3;5)0

Figure 1.1: The Ferrers' diagrams F(1;2;2;3;5) and F(1;2;2;3;5)0 = F(1;1;2;4;5).

tableau column strict standard

1 1 3 3

2 3 4

2

1 1 2 3

2 3 3

4

1 2 4 7

3 5 8

6

Figure 1.2: A tableau, column strict tableau, and standard tableau of shape
(1; 3; 4).

of the diagram is �lled with exactly one integer, and the integers increase weakly

left to right in rows and bottom to top in columns. A tableau is column strict if

the integers increase strictly in columns. A tableau is standard if it is a column

strict tableau �lled with the integers 1; 2; : : : ; n. Examples of tableaux, column

strict tableaux, and standard tableaux are given in Figure 1.2. If T is a column

strict tableau of shape �, let Ti;j be the integer �lling of the cell in the ith row and

the jth column. Then the weight of T , w(T ), is de�ned by

w(T ) =
Y

(i;j)2F�

xTi;j :

A polynomial P (x1; x2; : : : ; xN) is symmetric if and only if

P (x�1; x�2 ; : : : ; x�N ) = P (x1; x2; : : : ; xN) for all elements � of the symmetric group

SN . Let �n = �n(x1; x2; : : : ; xN) be the set of all symmetric polynomials that are



5

homogeneous of degree n. Let

� = �(x1; x2; : : : ; xN) = � =
M
n�o

�n(x1; x2; : : : ; xN):

There are six classical bases of �n, which are indexed by partitions of n. We de�ne

these bases for � = (�1; �2; : : : ; �l) ` n. The monomial basis fm�g�`n of �nis

given by

m�(x1; x2; : : : ; xN ) =
X

i1;i2;::: ;iN

r(i1;i2;::: ;iN )=�

xi11 x
i2

2 � � �x
iN

N
;

where r(i1; i2; : : : ; iN) is a weakly increasing rearrangement of i1; i2; : : : ; iN . The

power basis fp�g�`n is de�ned by p� = p�1p�2 � � � p�l; where

pk(x1; x2; : : : ; xN) =

NX
i=1

xk
i
:

The elementary basis fe�g�`n is de�ned by e� = e�1e�2 � � � e�l; where

ek(x1; x2; : : : ; xN) =
X

1�i1<i2<���<ik�N

xi1xi2 � � � xik :

The homogeneous basis fh�g�`n is given by h� = h�1h�2 � � �h�l; where

hk(x1; x2; : : : ; xN) =
X

1�i1�i2�����ik�N

xi1xi2 � � �xik :

The Schur basis fs�g�`n is given by

s� =
X
T2CS�

w(T );

where CS� is the set of all column strict tableaux of shape �. Finally, the forgotten

basis ff�g�`n is the dual basis of the elementary basis with respect to the Hall inner

product which is de�ned by declaring that

hm�; h�i = ��;�;

where ��;� is 1 if � = � and 0 otherwise.



6

Let Sn be the symmetric group on n elements, and let � = �1�2 � � ��n be a

permutation of Sn given in one-line notation (i.e. �(n) = �n). We can then de�ne

a number of statistics on such a permutation. If �i > �i+1, then i is said to be a

descent of �. The number of descents of � is des(�) = jfi : �i > �i+1gj. If � =

(�1; �2; : : : ; �l) ` n we can also de�ne the �-descents of �. We take � in one-line

notation, and break it into pieces of lengths �1; �2; : : : ; �l. We then only count the

number of descents �i > �i+1 such that both i and i+1 occur within the same piece,

then we denote the sum by des�(�). For example, if � = 8 6 2 7 4 3 1 5

and � = (1; 3; 4), we break � into pieces [8][6 2 7][4 3 1 5]. Here, des�(�) = 3 while

des(�) = 5.

If �i > i, then i is an excedance of �. We denote by e(�) = jfi : � > igj the

number of excedances of �. In the above example, e(�) = 3.

An inversion occurs whenever i < j but �i > �j. The number of inversions is

denoted by inv(�) =
P

i<j
�(�i > �j), where we use the notation �(A) = 1 if the

statement A is true, and �(A) = 0 if A is false. In the above example, inv(�) =

7+5+1+4+2+1+0+0 = 20. We can also de�ne the inversion statistic on words

other than permutations. Let R(1a1 ; 2a2; : : : lal) denote the rearrangements of a1

1's, a2 2's,: : : , and al l's. If
P

l

i=1 ai = n and r = r1r2 � � � rn 2 R(1
a1; 2a2 ; : : : lal),

then an inversion occurs whenever i < j and ri > rj. The number of inversions,

then, is inv(r) =
P

i<j
�(ri > rj).

Let Bn be the hyperoctahedral group on n elements. There are two helpful ways

of describing Bn. First, one can think of it as a Coxeter group with generators

�1; �2; : : : �n�1 and � , and relations

�2
i
= � 2 = 1; i = 1 : : : n� 1;

(�i�i+1)
3 = 1; i = 1 : : : n� 2;

(�i�j)
2 = 1; ji� jj � 2

(�i� )
2 = 1; i = 1 : : : n� 2;

(�n�1� )
4 = 1:
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The generators �i are, in fact, generators of the symmetric group, with �i = (i; i+1)

being the transposition of i and i+1 written in cyclic form for i = 1; 2; : : : ; n� 1.

The �nal generator is � = (�n), that is, a generator that maps n to �n. Because

of this, we can also think of Bn as the group of signed permutations. That is, if

� 2 Bn,

� =

 
1 2 3 � � � n

�1 �2 �3 � � � �n

!

where �i 2 f�1;�2; : : : ;�ng. As with the symmetric group, we can write elements

of Bn in cycle notation with cycles of the form 
i1 i2 � � � im

�1i2 �2i3 � � � �mi1

!
:

We will usually write such cycles in one-line notation:

(�mi1; �1i2; � � � ; �m�1im):

Note that here, i1 is mapped to �1i2, i2 is mapped to �2i3, and so on; when deter-

mining where each i is to be sent, ignore the sign on it and only consider the sign

on the element to which it is being mapped.

In order to de�ne the necessary statistics on elements of Bn, we must �rst de�ne

an ordering and a partial ordering on the elements. De�ne the linear order � by

the following.

1 <� 2 <� � � � <� n <� � � � <� �n <� � � � <� �2 <� �1: (1.1)

De�ne the partial order � by

1 � �1 <� 2 � �2 <� � � � <� n � �n:

The ordering � is used because the number of inversions with respect to � cor-

responds to the length of an element of Bn when considered as a Coxeter group.

Unfortunately, the inversions we are able to count here do not correspond to �,

but to the partial order �.
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Now we are ready to de�ne some widely accepted statistics on elements of

Bn. For � 2 Bn, let � = �1�2 � � ��n where �i 2 f�1;�2; : : : � ng. Then if

�i >� �i+1, i is a Bn-descent of �. The number of Bn-descents is then denoted by

desB(�) = jfi : �i >� �i+1gj, where �n+1 = n + 1. For � = (�1; �2; : : : ; �l) ` n,

the number of Bn �-descents is de�ned in the following way. Write � 2 Bn in one-

line notation, then break it into pieces of lengths �1; �2; : : : ; �l. Then desB;�(�)

counts only the Bn-descents such that i and i+ 1 lie in the same segment. A Bn-

inversion of � occurs whenever i < j and �i >� �j. We then denote the number

of Bn-inversions by inv(�) =
P

i<j
�(�i >� �j).

For � 2 Bn, let � = (�11�12 � � ��1l(1))(�21�22 � � ��2l(2)) � � � (�k1�k2 � � ��kl(k)) be in

cycle notation. We say that a Bn-descedance occurs at the jth position of the ith

cycle if either 1 � j < i � l(i) and �ij >� �ij+1, or j = l(i) and �il(i) >� �i1. If k

is the number of cycles of �, the number of Bn-descedances is denoted by

deB(�) =

kX
i=1

�
jj : �ij >� �ij+1 ; 1 � j < l(i)j+ �(�il(i) >� �i1)

�
:

For our study of the q-analogs of the results, we need notation for q-analogs of

the factorial, binomial coe�cient, and multinomial coe�cient. These are de�ned

by the following expressions.

[n] = 1 + q + q2 + � � �+ qn�1;

[n]! = [n][n� 1][n� 2] � � � [1];"
n

k

#
=

[n]!

[k]![n� k]!
;

"
n

k1k2 � � � kl

#
=

[n]!

[k1]![k2]! � � � [kl]!
:

Finally, the following is a useful theorem regarding q-analogs, which is due to

Carlitz [4].
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Theorem 1.1. Let
P

l

i=1 ai = n, then

X
r2R(1a1;2a2;::: ;lal)

qinv(r) =

"
n

a1a2 : : : al

#
;

where R(1a1; 2a2 ; : : : ; lal) is the set of rearrangements of a1 1's, a2 2's, : : : , and al

l's.

1.2 � Applied to Certain Bases of �

In this section we will state the results of Brenti and Beck and Remmel re-

garding the images of some symmetric function bases under the homomorphism �

which is de�ned as follows.

De�nition 1.2. The homomorphism � : � �! Q[x] is de�ned on the elementary

basis of � by

�(en) =
(1� x)n�1

n!

for n 2 f1; 2; : : :g, and by setting �(e0) = 1.

Brenti [3] gives explicit expressions for �(hn), �(pn) and �(p�), and the leading

coe�cient of �(s�). Beck and Remmel [1] [2] give combinatorial interpretations for

these expressions, then use the interpretations to �nd expressions for �(h�), the

coe�cient of (1 � x)n�l(�)=n! in �(s�), and q-analogs, which will be discussed in

the next section.

1.2.1 A Combinatorial Interpretation of n!�(hn)

First we consider the image of the basis of homogeneous symmetric functions

under �. We have the following theorem due to Brenti. The proof given is due to

Beck and Remmel.
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Figure 1.3: The (1,1,1,2)-brick tabloids of shape (2,3)

Theorem 1.3. Let � : � �! Q[x] be the ring homomorphism de�ned in De�nition

1.2. Then

n!�(hn) =
X
�2Sn

xdes(�):

Proof. The proof depends on the fact, due to E�gecio�glu and Remmel [7], that one

can express h� in terms of e� by

h� =
X
�`n

(�1)n�l(�)B�;�e� (1.2)

where B�;� denotes the number of �-brick tabloids of shape �. To construct a

�-brick tabloid of shape �, begin with the shape � and �ll it with bricks of sizes

�1; �2; : : : ; �l(�) in such a way that each brick lies in exactly one row of �. Figure

1.3 shows all three (1; 1; 1; 2)-brick tabloids of shape (2; 3).

We use the special case of (1.2) with � = (n) to interpret n!�(hn). Multiplying

by n! and applying the homomorphism � to both sides gives

n!�(hn) =
X
�`n

(�1)n�l(�)B�;(n)n!�(e�)

=
X
�`n

(�1)n�l(�)B�;(n)n!

l(�)Y
i=1

(1� x)�i

�i!

=
X
�`n

�
n

�1; �2; : : : ; �l

�
B�;(n)(x� 1)n�l(�)

=
X
�`n

X
T2B�;(n)

�
n

�1; �2; : : : ; �l

�
(x� 1)n�l(�) (1.3)

where B�;(n) is the set of �-brick tabloids of shape �, and if � = (�1; �2; : : : ; �l),
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then �
n

�1; �2; : : : ; �l

�
=

n!Q
l

i=1 �i!
:

We will begin by showing that the right hand side of (1.3) is equivalent to a

sum of signed, weighted combinatorial objects. That is, for some class of objects

Ohn,

X
�`n

X
T2B�;(n)

�
n

�1; �2; : : : ; �l

�
(1 � x)n�l(�) =

X
o2Ohn

w(o); (1.4)

where w(o) is the signed weight of the object o. Then we will de�ne a sign-

reversing, weight-preserving involution on these objects, the �xed points of which

will express
P

�2Sn
xdes(�).

To de�ne one of the objects, �rst select �, a partition of n, and a �-brick tabloid

of shape (n), i.e. which has one row of length n. Use the multinomial coe�cient

to �ll each brick of the tabloid with a decreasing sequence of integers from the set

f1; 2; : : : ; ng such that each integer appears exactly once in the tabloid. Use the

term (x�1)n�l(�) to assign a sign and weight to each cell c of the tabloid as follows:

w(c) =

8<
:
1; c is at the end of a brick;

�1 or x; otherwise:
(1.5)

This takes into account the fact that there should be exactly one cell in each brick

whose weight is not determined by one of the n � l(�) terms of the form (x� 1).

The signed weight of the object, o, is then de�ned to be w(o) =
Q

c2ow(c). Given

this de�nition of these objects, it is clear that (1.4) holds. Figure 1.4 shows an

example of such an object.

We now de�ne a sign-changing, weight-preserving involution on the objects in

Ohn. To perform the involution, begin checking from the left hand side of the

tableau for the �rst occurrence of one of the following conditions. When one of

these is found, perform the corresponding operation.

� If there is a decrease between the integer �llings of the last cell c of one brick
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10 9 7 3 1 8 4 6 5 2

x -1 -1 x 1 x 1 -1 x 1

Figure 1.4: An example of the objects in Ohn .

10 9 7 3 1 8 4 6 5 2

x 1 -1 x 1 x 1 -1 x 1

#"

10 9 7 3 1 8 4 6 5 2

x -1 -1 x 1 x 1 -1 x 1

Figure 1.5: An example of the involution on Ohn.

and that of the �rst cell of the next, join the two bricks together, and change

the weight of c from +1 to -1.

� If there is a cell c with weight -1, divide the brick after c and change the

weight of c from -1 to +1.

Figure 1.5 gives an example of the involution.

Since only the sign of the weight on one cell is changed, it is clear that this is

a sign-changing, weight-preserving involution. The �xed points of this involution

are the �lled �-brick tableaux of shape (n) such that the following two properties

hold:

� If c is a cell at the end of a brick, w(c) = 1. Otherwise, w(c) = x.

� The �llings are such that the integers decrease within bricks and increase

between consecutive bricks.
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10 9 7 3 1 8 4 6 5 2

x x x x 1 x 1 x x 1

Figure 1.6: A �xed point of the involution on Ohn .

Figure 1.6 gives an example of a �xed point of the involution.

Consider the �lling of such a �-brick tableaux as a permutation of Sn. Then

each descent of the permutation is weighted by x and every increase is weighted by

1. Moreover, there is exactly one object among the �xed points of the involution

which has a given �lling. Thus its weight is des(�), and the sum over all these

objects is the generating function of Sn with respect to descents. �

1.2.2 A Combinatorial Interpretation of n!�(h�)

If we consider now the image of the basis element h�, we obtain the following

result.

Theorem 1.4. Let � : �(x) �! Q[x] be the homomorphism de�ned in De�nition

1.2, and � be a partition of n. Then

n!�(h�) =
X
�2Sn

xdes�(�):

Proof. As in the previous proof, we begin by expressing the h� in terms of the e�'s,

and applying the homomorphism �. We then manipulate it in the same way to

obtain the following expression.

n!�(h�) =
X
�`n

X
T2B�;�

�
n

�1; �2; : : : ; �l

�
(x� 1)n�l(�):

We again express the right hand side of this expression as a sum of signed,

weighted combinatorial objects. The objects in this set, Oh� , are �-brick tabloids

of shape �. As previously, each brick is �lled in decreasing order with integers from
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-1 -1 1 1

1 x 1

7 3 1 5

2 6 4

 !

1 -1 1 1

1 x 1

7 3 1 5

2 6 4

Figure 1.7: An example of the involution on Oh� .

[n], and each cell is weighted as in the previous proof. The weight of an object o

is then de�ned by the product
Q

c2ow(c). This shows that we can write

X
�`n

X
T2B�;�

�
n

�1; : : : ; �l(�)

�
(x� 1)n�l(�) =

X
o2Oh�

w(o):

We again perform a sign-changing, weight-preserving involution, starting at the

highest leftmost cell, and proceeding across each row from top to bottom, �nd the

�rst occurance of one of the following conditions and perform the corresponding

operation.

� If there is a decrease between the integer �lling of the last cell c of one brick

and the �rst cell of the next brick, and both bricks lie in the same row, join

the two bricks together and change the weight of c from +1 to �1.

� If there is a cell cwith weight �1, divide the brick after c and change the

weight of c from �1 to +1.

Figure 1.7 gives an example of the involution.

Again, it is clear that this is a sign-changing, weight-preserving involution. Its

�xed points are �-brick tableaux of shape � �lled in such a way that the integer

�llings increase between consecutive bricks in the same row and decrease within

bricks, which are weighted so that the last cell of every brick receives weight 1 and

all other cells receive weight x. However, we do not know what happens between

rows.
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Reading across the rows from top to bottom gives a permutation. The �-

descents of the permutation, that is, the descents which occur all within the

same block when the permutation is divided into blocks of sizes �1; �2; : : : ; �k, are

weighted by x. All of the cells which are the last in a �-block or have an increase

in the permutation are weighted by 1. Thus the weight of the tableaux is xd�(�),

and the sum over these objects is the generating function of the permutations of

Sn with respect to �-descents. �

1.2.3 Other Results

Here we will state without proof the other results of Brenti, Beck and Remmel

which are the result of applying the homomorphism � to bases of the symmetric

functions. Their proofs are in the same spirit as the two given above. The following

theorem was originally proved by Brenti, and given a combinatorial proof by Beck

and Remmel.

Theorem 1.5. Let � : � �! Q[x] be the homomorphism de�ned in De�nition

1.2, and � be a partition of n. Then

(n� 1)!�(pn) =
X

�2Sn((n))

xe(�);

and
n!

z�
�(p�) =

X
Sn(�)

xe(�);

where Sn(�) is the conjugacy class of Sn indexed by the partition �, and e(�) is

the number of excadences of the permutation �.

In addition, Brenti gives an expression for the leading coe�cient of �(s�), and

Beck and Remmel give the coe�cient of (1� x)k in �(s�). We will not state them

here, as the de�nitions needed just to state them would take up too much space.

The are given with proof in [1].
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1.3 q-analogs for the Sn Case

In this section we give Beck and Remmel's q-analogs of the results stated in

the previous section. Most of the proofs of these results are similar, so we only

give the proof of the �rst result, stating the others without proof. We begin by

de�ning a q-analog of �.

De�nition 1.6. The homomorphism � : � �! (Q[q])[x] is de�ned on the elemen-

tary basis by

�(en) =
(1� x)n�1q(

n

2
)

[n]!

for n 2 f1; 2; 3; : : : g, and �(e0) = 1.

If we apply � to hn, the result is as follows.

Theorem 1.7. Let � be as de�ned in De�nition 1.6. Then

[n]!�(hn) =
X
�2Sn

xdes(�)qinv(�)

where des(�) is the number of descents of the permutation �, and inv(�) is the

number of inversions of �.

Proof. As in the proof of Theorem 1.3, we begin by writing hn in terms of the e�'s.

hn =
X
�`n

(�1)n�l(�)B�;(n)e�:

We then multiply both sides by [n]! and apply �.

[n]!�(hn) =
X
�`n

(�1)n�l(�)B�;(n)[n]!�(e�)

=
X
�`n

(�1)n�l(�)B�;(n)[n]!

l(�)Y
i=1

(1 � x)�iq(
�i
2
)

[�i]!

=
X
�`n

X
T2B�;(n)

"
n

�1; �2; : : : ; �l

#
q
P

i (
�i
2
)(x� 1)n�l(�): (1.6)
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We will now interpret this as a sum of weighted combinatorial objects o 2 Ohn;q.

As in the proof of Theorem 1.3, we begin with single row tabloids �lled with �-

bricks. We �ll the bricks with the integers 1; 2; : : : ; n in the following way. Let

B1; : : : ; Bl denote the bricks as they appear in order from left to right. Let bi = jBij

for i = 1; : : : ; l so b1; : : : ; bl is a rearrangement of �1; : : : ; �l. Associate i's to

each cell of brick Bi. For each rearrangement r 2 R(1b1 ; 2b2 ; : : : ; lbl), we create

a permutation �(r) of n in the following way. Number the 1's from right to left,

then the 2's, and so on. We then �nd the inverse permutation ��1(r):

r = 1 3 2 1 3 3 1 2 1 3 3

�(r) = 4 11 6 3 10 9 2 5 1 8 7

��1(r) = 9 7 4 1 8 3 11 10 6 5 2

By the way we have constructed the permutation, we have blocks of decreasing

integers which �t into the �-bricks. Recall that by Theorem 1.1;"
n

�1; �2; : : : ; �l

#
=

X
r2R(1b1;2b2;::: ;lbl)

qinv(r):

By the way we constructed �(r),

inv(��1(r)) = inv(�(r)) = inv(r) +

�
b1

2

�
+

�
b2

2

�
+ � � �+

�
bl

2

�
:

We then have �-brick tabloids of shape � with the cells �lled with the integers

1; 2; : : : ; n such that they decrease in bricks. We give an x-weight, wx(c) according

to the rule (1.5). In addition, each cell also has a q-weight, wq(c) of q
pi where

pi is the number of cells to the right of the cell ci containing numbers which are

lower than the integer contained in ci. The weight of an object o is de�ned by

w(o) =
Q

c2owx(c)wq(c). This shows that we can write

X
�`n

X
T2B�;(n)

"
n

�1; : : : ; �l(�)

#
q
P

i (
�i
2
)(x� 1)n�l(�) =

X
o2Ohn;q

w(o):

Figure 1.8 gives an example of these objects.
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10 9 7 3 1 8 4 6 5 2

xq9 -q8 -q6xq2 1 xq4 q1 -q2xq1 1

Figure 1.8: An example of an object in Ohn;q.

The involution on these objects is exactly the same as that in the proof of

Theorem 1.3. Note that since we do not change the �llings of the tabloids, the

q-weight does not change. As before, the x-weight changes only by sign. Thus the

�xed points count the permutations of Sn with respect to the statistic x
des(�)qinv(�).

We will now state some of Beck and Remmel's other results regarding q-analogs.

The proofs use similarmethods to those above and are not given here. Other results

may be found in [1].

Theorem 1.8. Let � be a partition of n, and let � be the homomorphism de�ned

in De�nition 1.6. Then

[n]!�(h�) =
X
�2Sn

xdes�(�)qinv(�);

and

[n]!�(pn) =

nX
k=1

q(
k

2
) [n]!

[k]!
k(x� 1)k�1�(hn�k);

where des�(�) is the number of �-descents of �, and inv(�) is the number of

inversions of �.

1.4 The Representation Theory of Bn

In order to examine the permutation enumeration of Bn, we must associate

a space of symmetric functions to it and de�ne an analog of � on that space of

functions. Here, we review the representation theory of Bn as given by Stembridge

[10] [9]. We follow the presentation of Beck [1] as a means of determining this space
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of symmetric functions. Later we will generalize the results for CkxSn following

Beck's presentation.

1.4.1 Conjugacy Classes of Bn

Recall that we can write the elements of Bn in cycles of the form 
i1 i2 � � � im

�1i2 �2i3 � � � �mi1

!

where �i = �1. We will usually write them in one line notation as

(�mi1; �1i2; : : : ; �m�1im)

with i1 mapped to �1i2, i2 mapped to �2i3 and so on. For example the element

� =

 
1 2 3 4 5 6 7 8 9

�3 9 �7 6 8 2 1 5 �4

!

can be written in cycle notation as

� = (1;�3;�7)(2; 9;�4; 6)(5; 8):

As a matter of convenience, we will replace the minus signs with bars over the

numbers. In this case, the above element becomes

� = (1; 3; 7)(2; 9; 4; 6)(5; 8):

Now consider the product of the signs in each cycle. If the product of the signs

is +1, we say that it is a positive cycle, or + cycle. If the product of the signs is

�1, we say that it is a negative cycle, or � cycle. Conjugating an arbitrary element

by one of the generators �i = (i; i+ 1) preserves the sign inventory in each cycle,

while conjugating by the generator � = (�n) changes the sign of two entries in

some cycle. Thus each conjugacy class must have a speci�ed number of + and �

cycles. Let (�; �) ` n denote a pair of partitions � and � such that j�j+ j�j = n.

We then have the following proposition.
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Proposition 1.9. For some (�; �) ` n, let C(�;�) be the set of elements of Bn

whose + cycles have lengths �1; �2; : : : ; �l(�), and whose � cycles have lengths

�1; �2; : : : ; �l(�). Then the set of conjugacy classes of Bn is fC(�;�)g(�;�)`n. More-

over,

jC(�;�)j =
2nn!

2l(�)+l(�)z�z�
;

where if � = (1a12a2 � � � nan), we de�ne z� = 1a12a2 � � �nana1!a2! � � � an!.

Our example above has two + cycles of lengths 3 and 2 and one � cycle of

length 4 so it belongs to the conjugacy class C(�;�) of B9 where � = (3; 2) and

� = (4).

1.4.2 The Characteristic Map, Inner Products and Dual

Bases

For a statement A, let �(A) be 1 if A is true and 0 if A is false. Then set

1(�;�) = �(� 2 C(�;�)) as the indicator function for the conjugacy class indexed by

(�; �). The set f1(�;�) : (�; �) ` ng is a then basis for the class functions C(Bn) of

the group Bn. We de�ne the characteristic map,

ch : C(Bn) �!

nM
k=0

�k(X)
 �n�k(Y );

by

ch : 1(�;�) 7!
1

z�z�
p�(X)p�(Y ) (1.7)

where X = x1; x2; : : : ; xN ; Y = y1; y2; : : : ; yN and N � n. From now on, we will

denote the space
L

n

k=0 �k(X)
�n�k(Y ) by �Bn, and we will let �B =
L

n�0 �Bn.

The characteristic map is an analog of the Frobenius characteristic, F : C(Sn) �!

�n, with 1� 7!
1
z�
p�(X), where 1� is the indicator function for the conjugacy class

of Sn indexed by �.

The usual inner product for any group G is given by

< �; >G=
1

jGj

X
g2G

�(g) (g):
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In Bn, then, we have



1(�;�); 1(�;�)

�
Bn

=
1

2nn!

X
�2Bn

1(�;�)(�)1(�;�)(�)

=
1

2nn!

X
�2Bn

1(�;�)��;���;�

=
1

2nn!
jC(�;�)j��;���;�

=
��;���;�

2l(�)+l(�)z�z�

where ��;� = �(� = �).

We would like to de�ne an inner product <;>� on �B in such a way that the

above inner product is preserved under the characteristic map. We de�ne it on the

basis fp�(X)p�(Y )g as follows.�
p�(X)p�(Y )

z�z�
;
p�(X)p�(Y )

z�z�

�
�

=
��;���;�

2l(�)+l(�)z�z�
: (1.8)

Now �x some standard order of the pairs of permutations (�; �), and consider

two bases fa�a�g(�;�)`n and fb�b�g(�;�)`n as the row vectors < a�a� >(�;�)`n and

< b�; b� >(�;�)`n. We say the two bases are dual if < a�a� > � < b�b� >
T= I.

From (1.8), *
p�(X)p�(Y )q

z�z�

2l(�)+l(�)

;
p�(X)p�(Y )q

z�z�

2l(�)+l(�)

+
�

= ��;���;�:

Thus the basis *
p�(x)p�(Y )q

z�z�

2l(�)+l(�)

+
(�;�)`n

is self dual.

Let 
2n(X;Y;X; Y ) denote the sum of the terms of degree 2n in

Y
i;j

1

(1� xixj)2
1

(1 � yiyj)
2
:

Beck [1] gives proofs of the following two theorems which give a useful characteri-

zation of duality.



22

Theorem 1.10.

X
(�;�)`n

p�(X)p�(Y )q
z�z�

2l(�)+l(�)

p�(X)p�(Y )q
z�z�

2l(�)+l(�)

= 
2n(X;Y;X; Y ):

Theorem 1.11. Let fR�(X)R�(Y )g(�;�)`n and fQ�(X)Q
�
(Y g(�;�)`n be bases of

�Bn(X;Y ). Under the inner product <;>�, these bases are dual if and only if

X
(�;�)`n

R�(X)R�(Y )Q�(X)Q
�
(Y ) = 
2n(X;Y;X; Y ):

1.4.3 Lambda-Ring Notation

It is convenient to use lambda-ring notation to describe the irreducible charac-

ters of Bn. We de�ne this notation on the power symmetric functions then extend

the de�nition to the other bases. Let X and Y be a alphabets of variables. The

following then de�ne pr(X) where r is a nonnegative integer.

pr(1) = 1

pr(�X) = �pr(X)

pr(X + Y ) = pr(X) + pr(Y )

Then if � = (�1; �2; : : : ; �k) ` n, we de�ne

p�(X) = p�1(X)p�2(X) � � � p�k(X):

We then use the Murgnaham-Nakayama Rule to extend the de�nition to the Schur

functions.

s�(X) =
X
�`n

��
�

z�
p�(X);

where ��
�
is the irreducible character of Sn indexed by � and evaluated at the

conjugacy class indexed by �. Given this de�nition, it is possible to show that

p�(X) =
X
�`n

��
�
s�(X):
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Note that this de�nition also extends the lambda-ring notation to the elemen-

tary and homogeneous symmetric functions, since er(X) = s(1r)(X) and hr(X) =

s(r), and e�(X) = e�1(X)e�2(X) � � � e�k(X) and h�(X) = h�1(X)h�2(X) � � � h�k(X).

Once we have these de�nitions, it is possible to prove the following identities.

The proofs are given in Chapter 2.

s�(X + Y ) =
X
���

s�(X)s�=�(Y );

s�(X � Y ) =
X
���

(�1)j�=�js�(X)s�0=�0(Y );

s�=�(�X) = (�1)j�=�js�0=�0(X);

s�(XY ) =
X
�;�`n

K�;�;�s�(X)s�(Y )

where K�;�;� =
P

�`n
1
z�
��
�
��
�
��
�
, and �0 is the conjugate partition of �.

1.4.4 The Irreducible Characters of Bn

We begin our analysis of the irreducible characters ofBn by considering the one-

dimensional characters. Let L be such a linear character. Then the characterization

of Bn as Coxeter group gives us the following facts. First, �2
i
= 1 means L(�i�i) =

L(�i)L(�i) = L(�) = 1 so L(�i) = �1 for all i. Similarly, since � 2 = 1, L(� ) = �1.

Finally, the relation (�i�i+1)
3 = 1 gives us that L(�i�i+1�i) = L(�i+1�i�i+1) so

L(�i)L(�i+1)L(�i) = L(�i+1)L(�i)L(�i+1) and L(�i+1) = L(�i) for all i � n � 1.

Thus Bn has four linear characters, given in Table 1.1 as applied to elements of

the conjugacy class indexed by (�; �).

Application of the characteristic map to these linear characters give the follow-

ing results, written in �-ring notation.

Theorem 1.12. Let ch be the characteristic map de�ned in (1.7). Then

ch(1n) = hn(X +X); (1.9)
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Table 1.1: Linear characters of Bn applied at C(�;�).

L(�i) L(� ) character applied at C(�;�)

1 1 1n 1

�1 1 �n (�1)n�l(�)�l(�)

1 �1 �n (�1)l(�)

�1 �1 �n�n (�1)n�l(�)

ch(�n) = en(X +X); (1.10)

ch(�n) = hn(X +X); (1.11)

and

ch(�n�n) = en(X +X): (1.12)

We prove (1.9) here. The proofs of (1.10), (1.11) and (1.12) are similar, with

the proof of (1.11) appearing also in [1].

Proof.

ch(1n) = ch

0
@ X

(�;�)`n

1(�;�)

1
A

=
X

(�;�)`n

ch(1(�;�))

=
X

(�;�)`n

p�(x)p�(x)

z�z�

=

nX
k=0

 X
�`k

p�(x)

z�

! X
�`n�k

p�(x)

z�

!

=

nX
k=0

hk(x)hn�k(x)

= hn(X +X)

�
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We now turn our attention to the other irreducible characters of Bn. Note that

if � is an irreducible character of Sn, we may regard it as a character of Bn by

letting �(�i) be de�ned as for �i 2 Sn if �i is a generator, and letting �(� ) = If

be the identity. We then have the following lemmas, which are proven in [1].

Lemma 1.13. Let � be an irreducible character of Sn, and let � be the linear

character �n given in Table 1.1. Then

ch(�) = s(X +X);

and

ch(��) = s�(X �X):

If � is a character of a subgroup H of G, let � "G
H
denote the character of G

obtained by inducing � to G. We then have the following characterization of the

irreducible characters.

Theorem 1.14. Let �� and �� be irreducible characters of Sk and Sn�k. Then

the irreducible characters of Bn are (��� (���)) "Bn
Sk�Sn�k

, their characteristics are

s�(X + X)s�(X �X), and their degrees are
�
n

k

�
f�f�, where f� is the number of

standard tableaux of shape �.

The proof appears in [1]. We provide a sketch of the proof. From Lemma 1.13,

the statement about the characteristics is clear. To show irreducibility, it su�ces

to show that the basis


s�(X +X)s�(X �X)

�
(�;�)`n

is self-dual. The degree is

calculated by computing the inner product
D
(�� � (���)) "Bn

Sk�Sn�k
; 1(1n;;)

E
Bn

.

1.5 �B Applied to Certain Bases of �B

In this section we introduce a homomorphism �B for the Bn case, an analog of

� in the Sn case. We explore the results of applying this homomorphism to certain

bases of �Bn(x; x), and �nd results analogous to the results for Sn. We begin by

listing the bases of �Bn.

Both of the following sets are self-dual bases of �Bn(x; x).
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� hp�(x)p�(x)i(�;�)`n,

�


s�(X +X)s�(X �X)

�
(�;�)`n

.

Using Jacobi-Trudi identities and dual bases, it can be shown that the following

are also bases.

�


h�(X +X)h�(X �X)

�
(�;�)`n

,

�


h�(X +X)e�(X �X)

�
(�;�)`n

,

�


e�(X +X)h�(X �X)

�
(�;�)`n

,

�


e�(X +X)e�(X �X)

�
(�;�)`n

,

�


m�(X +X)m�(X �X)

�
(�;�)`n

,

�


m�(X +X)f�(X �X)

�
(�;�)`n

,

�


f�(X +X)h�(X �X)

�
(�;�)`n

,

�


f�(X +X)f�(X �X)

�
(�;�)`n

.

1.5.1 The Homomorphism �B

We de�ne an analog of � for the Bn case.

De�nition 1.15. De�ne the homomorphism �B : �B ! Q[x] on the elementary

basis by

�B(ek(X +X)) =
(1� x)k�1 + x(x� 1)k�1

2kk!
;

and

�B(ek(X �X)) =
(1� x)k�1 � x(1� x)k�1

2kk!

for n 2 f1; 2; : : :g, and be setting �B(e0(X + Y )) = �B(e0(X � Y ) = 1.
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This is a de�nition on the entire space because < e�(X+X)e�(X�X) >(�;�)`n

is a basis for �B. It is important to note that this de�nition is suggested by the

combinatorial proofs in the permutation enumeration of Sn. In fact, the homomor-

phism can be de�ned in a simpler form, but this de�nition suggests the weighting

we will use in the combinatorial proofs for the Bn case.

1.5.2 �Bn
-Homogeneous Symmetric Functions Under �B

To express h�(X+X)h�(X+X) in terms of e�(X+X)e�(X+X), we can express

each part separately. That is, we can express h�(X + X) in terms of e�(X +X),

and h�(X � X) in terms of e�(X � X). Thus we consider �B(h�(X + X)) and

�B(h�(X �X)) separately.

If we apply the homomorphism �B to the basis elements hn(X+X) and hn(X�

X), we achieve the following theorem, due to Beck [1].

Theorem 1.16. If �B is the homomorphism de�ned in De�nition 1.15, then

2nn!�B(hn(X +X)) =
X
�2Bn

xdesB(�); (1.13)

and

2nn!�B(hn(X �X)) = (1 � x)n; (1.14)

where desB(�) is the number of Bn-descents of �.

Proof. We begin with the proof of (1.13). As in the Sn case, we begin by expressing

hn(X +X) in terms of the e�(X +X)'s.

hn(X +X) =
X
�`n

(�1)n�l(�)B�;(n)e�(X +X):
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Then apply the homomorphism and multiply by 2nn! to get

2nn!�B(hn(X +X)) =
X
�`n

(�1)n�l(�)2nn!B�;(n)�B(e�(X +X))

=
X
�`n

(�1)n�l(�)2nn!B�;(n)

l(�)Y
i=1

(1 � x)�i�1 + x(x� 1)�i�1

2�i�i!

=
X
�`n

X
T2B�;(n)

�
n

�1; � � � ; �l

�

�

l(�)Y
i=1

�
(x� 1)�i�1 + x(1� x)�i�1

�
:

We will now show that the right side of this equation now corresponds to a sum of

signed weighted objects o 2 OBhn+. We begin with an �-brick tabloid of shape �.

The multinomial coe�cient �lls each brick with a decreasing sequence of integers

such that exactly the set f1; 2; : : : ; ng is used to �ll the tabloid. Each brick is also

designated as either a regular brick or a barred brick. The weights of a cell c are

de�ned as follows. If c is in a regular brick,

w(c) =

8<
:1; c is at the end of a brick,

�1 or x; otherwise.

This accounts for the (x� 1)�i�1 terms. If c is in a barred brick,

w(c) =

8<
:x; c is at the end of a brick,

1 or � x; otherwise.

This accounts for the x(x� 1)�i�1 terms. The weight of an object o is de�ned by

w(o) =
Q

c2ow(c). Thus we can write

X
�`n

X
T2B�;(n)

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 + x(x� 1)�i�1

�
=

X
o2OBhn+

w(o):

An example of these objects is given in Figure 1.9 .

We now perform an involution similar to those in the Sn case. Check from

left to right in the tableau for the leftmost occurrence of one of the following, and

perform the corresponding operation.
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10 8 6 9 2 7 1 12 4 3 11 5

x -1 1 1 x x 1 -x 1 x -x x

Figure 1.9: An example of the objects in OBhn+.

� If there is a decrease between the integer �lling of the last cell c of a regular

brick and that of the �rst cell of an adjacent regular brick, join the bricks

together and change the weight of c from 1 to �1.

� If there is a decrease between the integer �lling of the last cell c of a barred

brick and that of the �rst cell of an adjacent barred brick, join the bricks

together and change the weight of c from x to �x.

� If there is a cell c in a regular brick with weight �1, cut the brick after c and

change the weight of c from �1 to 1.

� If there is a cell c in a barred brick with weight �x, cut the brick after c and

change the weight of c from �x to x.

This is a sign-changing, weight-preserving involution with �xed points with the

following properties.

� The integer �llings decrease within each brick, and increase between adjacent

regular bricks and between adjacent barred bricks.

� In regular bricks, the last cell has weight 1 and all other cells have weight x.

� In barred bricks, the last cell has weight x and all other cells have weight 1.

An example of such a �xed point is given in Figure 1.10 .

We now regard the sequence of integers as an element of Bn in one-line notation,

with the integers in regular bricks as regular numbers and the integers in barred

bricks as barred numbers. For the example in Figure 1.10, this is

� = 10 8 6 9 2 7 1 12 4 3 11 5:
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10 8 6 9 2 7 1 12 4 3 11 5

x x 1 1 x x 1 1 1 x 1 x

Figure 1.10: A �xed point of the involution on OBhn+.

Then with regard to the linear order for Bn de�ned in (1.1), each descent is

weighted by x and each ascent is weighted by 1. Thus the weight of each �xed

point is xdesB(�). This proves (1.13).

To prove (1.14), we write hn(X �X) in terms of e�(X �X), apply the homo-

morphism and multiply by 2nn! to get the following.

2nn!�B(hn(X �X)) =
X
�`n

(�1)n�l(�)2nn!B�;(n)�B(e�(X �X))

=
X
�`n

(�1)n�l(�)2nn!B�;(n)

l(�)Y
i=1

(1 � x)�i�1 � x(1� x)�i�1

2�i�i!

=
X
�`n

X
T2B�;(n)

�
n

�1; � � � ; �l

�

�

l(�)Y
i=1

�
(x� 1)�i�1 � x(1� x)�i�1

�
:

We again interpret this as a sum of signed, weighted objects o 2 OBhn�. The

objects here are similar to those in the previous case, but the weights are slightly

di�erent. Again we have �-brick tabloids of shape (n), with the cells �lled with the

integers 1; 2; : : : ; n such that the integers decrease within each brick. Each brick

is designated as regular or barred. Here, the weight of a cell c is de�ned by the

following. If c is in a regular brick,

w(c) =

8<
:1; c is at the end of the brick

�1 or x; otherwise:
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This accounts for the (x� 1)�i�1 terms. If c is in a barred brick,

w(c) =

8<
:�x; c is at the end of the brick

�1 or x; otherwise:

This accounts for the �x(1 � x)�i�1 terms. The weight of an object o is de�ned

by w(o) =
Q

c2ow(c). Then we can write

X
�`n

X
T2B�;(n)

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 � x(1� x)�i�1

�
=

X
o2OBhn�

w(o):

We will be able to perform two involutions on these objects. The �rst is similar

to that in the previous case. Traverse the tableau from left to right and �nd the

�rst occurrence of one of the following conditions, then perform the corresponding

operation.

� If there is a decrease between the integer �lling of the last cell c of a regular

brick and that of the �rst element in an adjacent regular brick, join the bricks

together and change the weight of c from 1 to �1.

� If there is a decrease between the integer �lling of the last cell c of a barred

brick and that of the �rst element in an adjacent barred brick, join the bricks

together and change the weight of c from �x to x.

� If there is a cell c in a regular brick with weight �1, cut the brick after c and

change the weight of c from �1 to 1.

� If there is a cell c in a barred brick with weight x, cut the brick after c and

change the weight of c from x to �x.

This is a sign-changing weight-preserving involution. Its �xed points have the

following properties.

� The integer �llings decrease within bricks and increase between adjacent

regular bricks and between adjacent barred bricks.
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10 8 6 9 2 7 1 12 4 3 11 5

x x 1 -1 -x x 1 -1 -1 -x -1 -x

Figure 1.11: A �xed point of the �rst involution on OBhn�.

� In regular bricks, the last cell has weight 1 and all other cells have weight x.

� In barred bricks, the last cell has weight �x and all other cells have weight

-1.

An example of such a �xed point is given in Figure 1.11 .

We may now perform a second involution. Again, check from left to right in the

tableau for the �rst occurrence of one of the following and perform the appropriate

operation.

� If there is a barred brick of length more than one, separate the �rst cell c

and make it into a separate regular brick of length one, changing the weight

of c from �1 to 1.

� If there is a regular brick of length more than one, separate the �rst cell c

and make it into a separate barred brick of length one, changing the weight

of the cell c from x to �x.

� If there is a decrease between the integer �lling of a regular brick which

consists of a single cell c and that of the �rst cell of an adjacent barred

brick, change the brick consisting of c into a barred brick, join the two bricks

together, and change the weight of c from 1 to �1.

� If there is a decrease between the integer �lling of a barred brick which

consists of a single cell c and that of the �rst cell of an adjacent regular

brick, change the brick consisting of c into a regular brick, join the two

bricks together, and change the weight of c from �x to x.
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-x 1 -x 1 -1 -x

2 5 6 1 4 3

l

-x 1 x 1 -1 -x

2 5 6 1 4 3

Figure 1.12: An example of the second involution on OBhn�.

-x -x 1 -x 1 1

1 2 3 4 5 6

Figure 1.13: A �xed point of the second involution on OBhn�.

An example of this sign-changing weight-preserving involution is given in Figure

1.12 . This involution has �xed points with all bricks of length one such that the

numbers increase between adjacent regular bricks, adjacent barred bricks, regular

bricks adjacent to barred bricks, and barred bricks adjacent to regular bricks. That

is, the numbers must be increasing throughout the tableau and there is only one

way to �ll it. Barred bricks are given weight �x and regular bricks are given weight

1. Such a �xed point is shown in Figure 1.13 . Thus the only choice available is in

choosing the weight of each cell. This is counted by (1� x)n.

�

In the case where we consider h� rather than the special case hn, we can perform

involutions similar to those mentioned previously. We then obtain the following

results. The proofs of these results can be found in [1].
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Theorem 1.17. Let � ` n and let �B be de�ned as in De�nition 1.15. Then

2nn!�B(h�(X +X)) =
X
�2Bn

xdesB;�(�);

and

2nn!�B(h�(X +X)) =

�
n

�1; �2; : : : ; �l

�
(1� x)n;

where desB;�(�) is the number of Bn �-descents of �.

1.5.3 �Bn
-Power Symmetric Functions Under �B

When we apply �B to the power basis, we get the simple result that these count

Bn-descedances over conjugacy classes. Here we will state the result without proof.

The full proof can be found in [1].

Theorem 1.18. If � ` n and �B is the homomorphism de�ned in De�nition 1.15,

then
2nn!

z�z�
�B(p�(x)p�(x)) =

X
�2Bn(�;�)

xdeB(�);

where Bn(�; �) is the conjugacy class of Bn indexed by the pair (�; �), and deB(�)

is the number of Bn-descedances of �.

1.5.4 q-analogs for the Bn Case

As with the Sn case, we can introduce a q-analog of the homomorphism �B.

De�nition 1.19. De�ne the homomorphism �B : �B ! (Q[q])[x] on the elemen-

tary basis by

�
B
(ek(X +X)) =

q(
k

2
) �(1� x)k�1 + x(x� 1)k�1

�
2k[k]!

;

and

�B(ek(X �X)) =
q(

k

2
) �(1 � x)k�1 � x(1� x)k�1�

2k[k]!

for n 2 f1; 2; : : :g and by setting �
B
(e0(X + Y )) = �

B
(e0(X � Y )) = 1.
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Application of this homomorphism to hn(X + X) and hn(X � X) gives the

following results.

Theorem 1.20. If �
B
is the homomorphism de�ned by De�nition 1.19, then

2n[n]!�
B
(hn(X +X)) =

X
�2Bn

xdesB(�)qinvB(�)

and

2n[n]!�
B
(hn(X �X)) =

X
�2B̂n

(�x)desB(�)qinvB(�)

where B̂n = f�1�2 � � ��n : �i 2 fi; igg.

The proof of these statements uses involutions very similar to those used in the

proof of Theorems 1.13 and 1.14. The one di�erence is the inclusion in the weight

of a power qpi where pi is the number of cells to the right of the cell in question

whose integer contents is lower. In the case of hn(X � X), the second involution

can not be performed.



Chapter 2

Lambda-ring Notation at Roots of

Unity

We will write the irreducible characters of CkxSn using an extended version of

�-ring notation. In this chapter, we de�ne this extension and prove some properties

of it. Note that this is not the standard de�nition, which may be found in [5]. This

de�nition allows particularly elegant combinatorial proofs of certain identities.

2.1 De�nitions

LetX = x1+x2+� � �+xl and Y = y1+y2+� � �+ym be formal sums of alphabets.

De�ne �-ring notation (in its unextended form) on the power symmetric functions

by

pr(0) = 0;

pr(x) = xr;

pr(X + Y ) = pr(X) + pr(Y );

pr(�X) = �pr(X);

p�(X) =

l(�)Y
i=1

p�i(X):
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Extend this to other bases of the symmetric functions using the transition matrices

between them and the power basis.

hr(X) =
P

�

1
z�
p�(X); h�(X) =

Q
l(�)
i=1 h�i(X);

er(X) =
P

�

(�1)n�l(�)

z�
p�(X); e�(X) =

Q
l(�)
i=1 e�i(X);

s�(X) =
P

�

�
�
�

z�
p�(X);

where ��
�
is the irreducible character of Sn indexed by � evaluated at the conjugacy

class indexed by �. It is also possible to show that

p�(X) =
X
�

��
�
s�(X):

We extend the above de�nition to roots of unity by adding a single additional

property. If � = e
2�i
k for a positive integer k, then

pr(�X) = �pr(X):

2.2 Properties

Here we discuss properties of the extended �-ring notation. The standard

unextended �-ring notation has the following properties. These also hold in the

extended case.

Theorem 2.1.

s�(X + Y ) =
X
���

s�(X)s�=�(Y ); (2.1)

s�(X � Y ) =
X
���

(�1)j�=�js�(X)s�0=�0(Y ); (2.2)

s�=�(�X) = (�1)j�=�js�0=�0(X); (2.3)

s�(XY ) =
X
�;�

K�;�;�s�(X)s�(Y ); (2.4)

where

K�;�;� =
X
�

1

z�
��
�
��
�
��
�

is the Kronecker coe�cient.
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1 2 4 4
3 5 5 5
3

1 2 3 3
4 5 5 5
4

Hooks: 1 2 3 3 4 4 5 5 5

Figure 2.1: The rim-hook tableaux of shape (1,4,4) and type (1,1,2,2,3).

To prove this theorem, we need the following lemma.

Lemma 2.2. If �; � ` n and � and � are partitions such that � + � = �, then

��
�
=
X
���

��
�
�
�=�

�
:

Proof. (Sketch) Given a Ferrers' diagram, F�, of shape �, a him hook of � is

a sequence of cells, h, along the northeast boundary of F� such that any two

consecutive cells in h share an edge, and the removal of the cells of h from F�

leaves the Ferrers' diagram of another partition. Given two partitions � and �, a

rim-hook tableau of shape � and type � is a sequence of partitions

T = (= �(0) � �(1) � � � ��(k) = �) (2.5)

such that for each 1 � i � k, �(i) � �(i�1) is a rim hook of size �i. Let RH(�; �)

denote the set of all rim-hook tableaux of shape � and type �. De�ne the sign of

a rim-hook h by

sgn(h) = (�1)r(h)�1

where r(h) is the number of rows occupied by h. Then the sign of a rim-hook

tableau is the product of the signs of the hooks:

sgn(T ) =
Y
h2T

sgn(H):

As an example, both of the rim-hook tableaux of shape (1,4,4) and type (1,1,2,2,3)

are given in Figure 2.1.



39

Hooks: 1 2 2 3 3 3 4 5 5

1 3 3 5
2 3 4 5
2

1 3 3 4
2 3 5 5
2

1 3 3 3
2 4 5 5
2

1 2 2 5
3 3 4 5
3

1 2 2 4
3 3 5 5
3

1 2 2 5
3 3 3 5
4

Figure 2.2: The rim-hook tableaux of shape (1,4,4) and type (1,2,3) + (1,2).

The proof of the lemma depends on the fact (see [7]) that if ��
�
is the irreducible

character of Sn indexed by � evaluated at the conjugacy class indexed by �, then

��
�
=

X
T2RH(�;�)

sgn(T ):

To see why the lemma holds, consider the example in Figure 2.1. Suppose that

instead of �lling � with the hooks in the order given in the de�nition, we �ll � in

another way. If � = (1; 2; 3) and � = (1; 2), then � + � = �. Fill � �rst by hooks

of sizes 1, 2, 3, then by sizes 1,2. Figure 2.2 shows the result of this.

Classify these rim-hook tableaux by the partition, �, that is formed by the

hooks of type �. For each �, �lling � the way that we did corresponds to �lling �

with rim-hooks of type � and then �lling �=� with rim-hooks of type �. This gives

a product of the two characters: ��
�
�
�=�

�
. Summing over all � gives the result.

�

We are now ready to prove Theorem 2.1.

Proof. (2.1) Begin by using the de�nition of lambda-ring notation for the Schur

functions.

s�(X + Y ) =
X
�`n

��
�

z�
p�(X + Y ):
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Write � as (11 ; 22 ; : : : ; nn) to obtain

X
(11 ;::: ;nn )

��(11;::: ;nn)

11 � � � nn1! � � � n!

l(�)Y
i=1

(p�i(X) + p�i(Y ))

=
X

(11 ;::: ;nn )

��(11;::: ;nn )

11 � � �nn1! � � � n!

nY
i=1

(pi(X) + pi(Y ))
i :

The binomial theorem givesX
(11 ;::: ;nn )

��(11 ;:::nn )

11 � � �nn1! � � � n!

nY
i=1

iX
ri=0

�
i

ri

�
pi(X)ripi(Y )

i�ri :

Setting i = ri + si givesX
1r1+s1 ���nrn+sn

��(1r1+s1 ;��� ;nrn+sn )

�
p1(X)r1 � � � pn(X)rn

1r1 � � �nrnr1! � � � rn!

��
p1(Y )

s1 � � � pn(Y )
sn

1s1 � � � nsns1! � � � sn!

�
:

We now apply Lemma 2.2, with � = (1r1 ; : : : ; nrn) and � = (1s1 ; : : : ; nsn).

nX
m=0

X
�`m

0
@ X

(1r1 ;::: ;nrn )

�
�

(1r1;::: ;nrn )

1r1 � � �nrnr1! � � � rn!
p1(X)r1 � � � pn(X)rn

1
A

�

0
@ X

(1s1;::: ;nsn)

�
�=�

(1s1;::: ;nsn)

1s1 � � �nsns1! � � � sn!
p1(Y )

s1 � � � pn(Y )
sn

1
A (2.6)

=

nX
m=0

X
�`m

 X
�`m

��
�

z�
p�(X)

! X
�`n�m

�
�=�

�

z�
p�(Y )

!
=

nX
m=0

X
�`m

s�(X)s�=�(Y ):

Since the Schur function s�=�(Y ) is zero if we do not have � � �, this is equal toP
��� s�(X)s�=�(Y ), completing the proof.

(2.2) The proof of this identity is extremely similar to the previous proof. Follow

the same steps, using �Y instead of Y . Then at (2.6) we have instead in the Y

portion

X
(1s1;::: ;nsn)

�
�=�

(1s1;::: ;nsn)

1s1 � � �nsns1! � � � sn!
p1(�Y )

s1 � � � pn(�Y )
sn

= (�1)n�m
X

(1s1;::: ;nsn)

(�1)n�m+l(1s1 ;::: ;nsn)�
�=�

(1s1;::: ;nsn)

1s1 � � � nsns1! � � � sn!
p1(Y )

s1 � � � pn(Y )
sn :
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Then since if j�j = n and j�j = m, �
�
0
=�

0

�
= (�1)n�m+l(�)�

�=�

�
, this becomes

(�1)n�m
X

(1s1 ;::: ;nsn)

�
�
0
=�

0

(1s1;::: ;nsn)

1s1 � � � nsns1! � � � sn!
p1(Y )

s1 � � � pn(Y )
sn = (�1)n�ms�0=�0(Y ):

Putting this into the full identity gives the result.

(2.3) This is an immediate consequence of the proof of (2.2).

(2.4) We use the de�nition of �-ring notation for Schur functions to write

s�(XY ) =
X
�

��
�

z�
p�(XY ) =

X
�

��
�

z�
p�(X)p�(Y ):

Writing the p�'s in terms of Schur functions gives

X
�

��
�

z�

 X
�

��
�
s�(X)

! X
�

��
�
s�(Y )

!
=
X
�;�

s�(X)s�(Y )
X
�

1

z�
��
�
��
�
��
�
:

This completes the proof. �

We have the following corollary of Theorem 2.1.

Corollary 2.3.

hn(X + Y ) =

nX
m=0

hm(X)hn�m(Y ); (2.7)

hn(XY ) =
X
�

s�(X)s�(Y ): (2.8)

Proof. For the �rst identity,

hn(X + Y ) = s(n)(X + Y )

=
X
��(n)

s�(X)s(n)=�(Y )

=

nX
m=0

sm(X)sn�m(Y ):
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For the second identity,

hn(XY ) = s(n)(XY )

=
X
�;�;�

1

z�
�(n)
�
��
�
��
�
s�(X)s�(Y )

=
X
�

s�(X)
X
�

��
�

z�

X
�

��
�
s�(Y )

=
X
�

s�(X)
X
�

��
�

z�
p�(Y )

=
X
�

s�(X)s�(Y )

�

Some properties similar to those in Theorem 2.1 hold in the extended lambda

ring notation. We will not prove these here as the proofs are nearly identical to

those above.

Theorem 2.4. If � = e
2�i
k , then

s�(�
aX + �bY ) =

X
���

s�(�
aX)s�=�(�

bY );

for any integers a and b, and

s�(X � �Y ) = s�(�X � Y )

=
X
�;�;�

�l(�)
1

z�
��
�
��
�
��
�
s�(X)s�(Y )

=
X
�;nu

K�;�;�s�(X)s�(�Y ) =
X
�;nu

K�;�;�s�(�X)s�(Y ):

We will use a special case of the following Corollary in our determination of

the irreducible characters of CkxSn.

Corollary 2.5. Let � = e
2�i
k , and let a1; a2; : : : ; ak be natural numbers. Then

s�(�
a1X(1) + � � �+ �akX(k)) =X

�(1)��(2)�����(k�1)��

s�(1)(�
a1X(1))s�(2)=�(1)(�

a2X(2)) � � � s�=�(k�1)(�
akX(k)):



Chapter 3

The Representation Theory of

CkxSn

The main goal of this text is to explore the permutation enumeration of the

wreath product CkxSn, the group of signed permutations where there are k signs,

1; �; �2; : : : ; �k�1, where � = e
2�i
k . In order to do this, however, we must know

something of the representation theory of this group. In this chapter, we give a de-

tailed presentation of the representation theory of CkxSn including the irreducible

characters of CkxSn and their relationship to a space of symmetric functions.

3.1 Descriptions of CkxSn

We begin by describing the group CkxSn in two ways. First, we can think

of it as a Coxeter-like group, de�ned by generators and relations. There are n

generators, �1; �2; : : : ; �n�1; � , which satisfy the following relations:

�2
i

= 1; i = 1; 2; : : : ; n� 1;

� k = 1;

(�i�j)
2 = 1; ji� jj > 1;

(�i�i+1)
3 = 1; i = 1; 2; : : : ; n� 2;

(��n�1)
2k = 1:
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In fact, the generators �i are the transpositions (i; i+ 1) which generate the sym-

metric group. The other generator is � = (�n), that is, it maps n to � times

itself.

We can also write an element � 2 CkxSn in two line notation. For example, we

could have

� =

 
1 2 3 4 5 6 7 8 9 10

3 �26 �27 10 �5 �22 �1 9 �28 4

!
2 C3xSn:

We can then write this in one-line form:

� = 3 �26 �27 10 �5 �22 �1 9 �28 4 :

We can also write the element in cyclic notation as

� = (�1; 3; �27)(�22; �26)(�5)(�28; 9): (3.1)

Note that when determining what a number is mapped to, one ignores the sign

on that number and then considers only the sign on the next number in the cycle.

Thus, in this example, we ignore the sign of � on the 1 and note that then 1 maps

to 3 since the sign on 3 is 1.

3.2 Conjugacy Classes of CkxSn

In this section we will describe the conjugacy classes of CkxSn. To do this, con-

sider a single cycle . Conjugation by a generator �i does not change the structure

of the cycle or which signs occur in the cycle. Conjugation by the generator � does

not change the structure of the cycle and for cycles of length at least 2, changes one

sign by �k�1 and one sign by �, thus preserving the product of the signs within the

cycle. Moreover, we can obtain any desired sign pattern by multiplying by appro-

priate products of �is and � s in the following way. If  = (�a1i1; �
a2i2; : : : ; �

amim),

we can conjugate by an element � of Sn and the result is

�(�a1i1; �
a2i2; : : : ; �

amim)�
�1 = (�a1�(i1); �

a2�(i2); : : : ; �
am�(im));
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thus we can change the base set to whatever we choose. We can obtain the desired

sign pattern in the following way. To increase the sign on ij by l, conjugate by

(�lij) = �ij�ij+1 � � ��n�1�
l�n�1 � � ��ij+1�ij , giving

(�lij)(�
a1i1; : : : ; �

ajij; : : : ; �
amim)(�

k�lij) =

(�a1i1; : : : ; �
aj+lij; : : : ; �

aj+1+k�lij+1; : : : ; �
amim):

One can then adjust all the signs one at a time as necessary.

If the product of all of the signs in a cycle is 1, then we say the cycle is

a 1-cycle. Similarly, if the product of the signs is �i, the cycle is called an �i-

cycle. For example, in (3.1), (�1; 3; �27) is a 1-cycle, (�22; �26) and (�5) are �-cycles,

and (�28; 9) is an �2-cycle. Thus an �i-cycle remains so under conjugation by any

element of CkxSn. Let (�
(1); : : : ; �(k)) ` n denote a k-tuple of partitions such that

j�(1)j+ � � �+ j�(k)j = n. Then by the above argument we have the following lemma.

Lemma 3.1. For some (�(1); : : : ; �(k)) ` n, let C(�(1);::: ;�(k)) = f� 2 CkxSn : the

�i-cycles have lengths �
(i)
1 ; : : : ; �

(i)

l(�(i))
for i = 1; : : : ; kg: Then the set of conjugacy

classes of CkxSn is fC(�(1);::: ;�(k))g(�(1);::: ;�(k))`n.

The example in (3.1) then belongs to the conjugacy class C((2;1);(2);(3)). We can

also determine the size of each conjugacy class.

Lemma 3.2. The conjugacy class C(�(1);::: ;�(k)) has order

jC(�(1);::: ;�(k))j =
knn!

kl(�
(1))+���+l(�(k))z

�(1)
� � � z

�(k)

:

Proof. Suppose that for each i, j�(i)j = mi. Then we can choose the elements

for each of the cycles in
�

n

m1;::: ;mk

�
ways. For each i, we choose the �i-cycles in

mi!
z
�(i)

ways. In each �i-cycle, one of the signs must be chosen so the product of the

signs is �i; the other signs are arbitrary. We choose the sign pattern for the jth

�i-cycle in k�
(i)

j �1 ways. Putting all of this together, the total number of elements

of C(�(1);::: ;�(k)) is�
n

m1; : : : ;mk

�
m1!

z�(1)
� � �

mk!

z�(k)
kn�l(�0)�����l(�

(k)) =
knn!

kl(�
(1))+���+l(�(k))z�(1) � � � z�(k)

:
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This completes the proof. �

3.3 The Characteristic Map and Inner Products

Here we introduce an analog of the Frobenius Characteristic for CkxSn, which

preserves an inner product on the class functions of CkxSn.

Let 1(�(1);::: ;�(k)), de�ned by

1(�(1);::: ;�(k))(�) =

8<
:1; � 2 C(�(1);::: ;�(k));

0; otherwise;

be the indicator function on the conjugacy class C(�(1);::: ;�(k)). Then the collection

f1(�(1);::: ;�(k))g(�(1);::: ;�(k))`n forms a basis for C(CkxSn), the class functions on CkxSn.

De�ne the characteristic map

ch : C(CkxSn) �!
M

m1+���+mk=n

�m1
(X(1))
 � � � 
 �mk

(X(k))

by

1(�(1);::: ;�(k)) 7!
1

z�(1) � � � z�(k)
p
�(1)

(X(1)) � � � p
�(k)

(X(k)); (3.2)

where X(i) = (x
(i)
1 ; x

(i)
2 ; : : : ) is a set of variables. We will denote the spaceM

m1+���+mk=n

�m1
(X(1))
 � � � 
 �mk

(X(k)) = �Wk;n
(X(1); : : : ;X(k)):

We denote

�Wk
(X(1); : : : ;X(k)) =

M
n�0

�Wk;n
(X(1); : : : ;X(k)): (3.3)

Now we will de�ne inner products on the class functions of CkxSn and �Wk

such that the characteristic map is preserved. The usual inner product on class

functions of a group G is

< �; >G=
1

jGj

X
g2G

�(g) (g):



47

For CkxSn, this becomes



1(�(1);::: ;�(k)); 1(�(1);::: ;�(k))

�
Wk;n

=
1

knn!

X
g2CkxSn

1(�(1);::: ;�(k))(g)1(�(1);::: ;�(k))(g)

=
1

knn!

X
g2CkxSn

1(�(1);::: ;�(k))(g)��(1);�(1) � � � ��(k);�(k)

=
1

knn!
jC(�(1);::: ;�(k))j��(1);�(1) � � � ��(k);�(k)

=
�
�(1);�(1)

� � � �
�(k);�(k)

kl(�
(1))+���+l(�(k))z�(1) � � � z�(k)

where ��;� = 1 if � = � or 0 otherwise.

We would like to de�ne an inner product on �Wk
so that the characteristic map

preserves the above inner product. Thus we use (3.2) to de�ne <;>�.*
p�(1)(X

(1)) � � � p�(k)(X
(k))

z�(1) � � � z�(k)
;
p�(1)(X

(1)) � � � p�(k)(X
(k))

z�(1) � � � z�(k)

+
�

=
�
�(1);�(1)

� � � �
�(k);�(k)

kl(�
(1))+:::+l(�(k))z�(1) � � � z�(k)

;

that is,



p�(1)(X

(1)) � � � p�(k)(X
(k)); p�(1)(X

(1)) � � � p�(k)(X
(k))
�
�

=
z�(1) � � � z�(k)��(1);�(1) � � � ��(k);�(k)

kl(�
(1))+���+l(�(k))

:

This de�nes a scalar product on �Wk
since fp�(1)(X

(1)) � � � p�(k)(X
(k))g is a basis of

�Wk
.

3.4 Dual Bases

Here we discuss what it means for two bases of �Wk;n
to be dual with respect

to the inner product <;>� de�ned in the previous section. In later chapters, this

will be used to determine the irreducible characters of CkxSn.

Fix some standard order on k-tuples of partitions of n. Think of a basis

fa�(1) � � � a�(k)g as a row vector ha�(1) � � � a�(k)i with indices ranging over all k-tuples
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(�(1); : : : ; �(k)) ` n. From the previous section,*
p
�(1)

(X(1)) � � � p
�(k)

(X(k))q
z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

;
p
�(1)

(X(1)) � � � p
�(k)

(X(k))q
z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

+
�

= �
�(1);�(1) � � � ��(k);�(k) ;

which means that the basis*
p
�(1)

(X(1)) � � � p
�(k)

(X(k))q
z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

+
(�(1);::: ;�(k))`n

is self-dual with respect to <;>�.

We now want to determine a criterion for determining if two bases are dual.

The following theorem will point the way to the general case, which follows. Let


2n(X(1); : : : ;X(k); Y (1); : : : ; Y (k)) denote the sum of the terms of degree 2n in

kY
i=1

Y
r;s

1

(1�X
(i)
r Y

(i)
s )k

:

We then have the following theorem.

Theorem 3.3.

X
(�(1);::: ;�(k))`n

p�(1)(X
(1)) � � � p�(k)(X

(k))q
z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

p�(1)(Y
(1)) � � � p�(k)(Y

(k))q
z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

= 
2n(X(1); : : : ;X(k); Y (1); : : : ; Y (k)):

Proof. We rewrite the left hand side in the following way.

X
(�(1);::: ;�(k))`n

p�(1)(X
(1)) � � � p�(k)(X

(k))q
z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

p�(1)(Y
(1)) � � � p�(k)(Y

(k))q
z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

=
X

(�(1);::: ;�(k))`n

kl(�
(1))+���+l(�(k))

z
�(1)
� � � z

�(k)

p�(1)(X
(1)) � � � p�(k)(X

(k))p�(1)(Y
(1)) � � � p�(k)(Y

(k))

=
X

m1+���+mk=n

kY
i=1

0
@ X
�(i)`mi

kl(�
(i))

z�(i)
p
�(i)

(X(i))p
�(i)

(Y (i))

1
A :
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Now if 
2mi(X(i); Y (i)) is the sum of the terms of degree 2mi in
Q

r;s

1

(1�X
(i)
r Y

(i)
s )k

,

we will show that

X
�(i)`mi

kl(�
(i))

z
�(i)

p
�(i)

(X(i))p
�(i)

(Y (i)) = 
2mi(X(i); Y (i));

which implies the theorem. We repeatedly rewrite the product as follows.

Y
r;s

1

(1�X
(i)
r Y

(i)
s )k

= exp

 
log

 Y
r;s

1

(1 �X
(i)
r Y

(i)
s )k

!!

= exp

 X
r;s

k log

�
1

1 �X
(i)
r Y

(i)
s

�!

= exp

 X
r;s

k
X
l�1

(X
(i)
r Y

(i)
s )l

l

!

= exp

 X
l�1

k

l
pl(X

(i))pl(Y
(i))

!

= 1 +
X
a�1

1

a!

 X
l�1

k

l
pl(X

(i))pl(Y
(i))

!a

:

Because we only care about the terms of degree 2mi, we can write this again as

miX
a=1

1

a!

 
miX
l=1

k

l
pl(X

(i))pl(Y
(i))

!a

:

Now take the terms of degree 2mi to obtain

miX
a=1

1

a!

X
b1+2b2+���+mibmi

=mi

kb1(p1(X
(i))p1(Y

(i)))b1

1b1b1!
� � �

kbmi (pmi
(X(i))pmi

(Y (i)))bmi

1bmi bmi
!

=
X

�(i)`mi

kl(�
(i))

z
�(i)

p
�(i)

(X(i))p
�(i)

(Y (i)):

This completes the proof. �

We now generalize the previous result into a criterion for the duality of any

two bases. This is expressed in the following theorem.
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Theorem 3.4. Let fR
�(1)

(X(1)) � � �R
�(k)

(X(k))g and fQ
�(1)

(X(1)) � � �Q
�(k)

(X(k))g

be bases of �Wk;n
(X(1); : : : ;X(k)). Under the inner product <;>�, these bases are

dual if and only if

X
(�(1);::: ;�(k))`n

R
�(1)

(X(1)) � � �R
�(k)

(X(k))Q
�(1)

(Y (1)) � � �Q
�(k)

(Y (k))

= 
2n(X(1); : : : ;X(k); Y (1); : : : ; Y (k)): (3.4)

Proof. Let

~p =

*
p�(1)(X

(1)) � � � p�(k)(X
(k))q

z
�(1)

���z
�(k)

kl(�
(1)

)+���+l(�(k))

+
(�(1);::: ;�(k))`n

;

~R =


R�(1)(X

(1)) � � �R�(k)(X
(k))
�
(�(1);::: ;�(k))`n

= ~p �A;

and

~Q =


Q
�(1)

(X(1)) � � �Q
�(k)

(X(k))
�
(�(1);::: ;�(k))`n

= ~p �B:

The proof depends entirely on linear algebra, and not on 
2n itself. It proceeds

by showing that the bases are dual if and only if ATB = I, and then that (3.4)

holds if and only if ATB = I.

The bases are dual if and only if

~RT
� ~Q = jj



R�(1)(X

(1)) � � �R�(k)(X
(k)); Q�(1)�(X

(1)) � � �Q�(k)�(X
(k))
�
�
jj = I:

On the other hand,

~RT
� ~Q = (~pA)T � ~pB = AT~pT � ~pB;

and since ~p is a self-dual basis we have ~pT~p = I. Thus,

~RT
� ~Q = ATB:

Thus the bases are dual i� and only if ATB = ABT = I.

Now we can write the left hand side of (3.4) as

X
(�(1);::: ;�(k))`n

R
�(1)

(X(1)) � � �R
�(k)

(X(k))Q
�(1)

(Y (1)) � � �Q
�(k)

(Y (k))

= ~R � ~QT = ~pA � (~pB)T = ~pA �BT~pT :
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We have from the previous theorem that ~p � ~pT = 
2n, which means that (3.4)

holds if and only if

~pA �BT~pT = ~p � ~pT :

This holds if and only if (ABT)(�(1);::: ;�(k));(�(1);::: ;�(k)) = �(�(1);::: ;�(k));(�(1);::: ;�(k)), that

is, if ABT = I.

We now have that the bases are dual if and only if ATB = I which is true if

and only if (3.4) holds, which proves the theorem. �

We can use the criterion given in Theorem 3.4 to show that two Schur function

bases are dual. We will use this in the proof of the irreducible characters of CkxSn.

Theorem 3.5. Let � = e
2�i
k and let (�(1); : : : ; �(k)) extend over all k-tuples of

partitions. Then the bases

f

kY
i=1

s
�(i)

(�1�iX(1) + � � �+ �k�iX(k))g and f

kY
i=1

s
�(i)

(�(k�1)iX(1) + � � �+ �(k�k)iX(k))g

of �Wk
are dual with respect to <;>�.

Proof. We proceed by showing that the the criterion in Theorem 3.4 is met in this

case. Thus we consider the following sum.

X
(�(1);::: ;�(k))

kY
i�1

s
�(i)

(�1iX(1) + � � �+ �kiX(k))s
�(i)

(�(k�1)iY (1) + � � �+ �(k�k)iY (k))

=

kY
i=1

 X
�(i)

s�(i)(�
1iX(1) + � � �+ �kiX(k))s�(i)(�

(k�1)iY (1) + � � �+ �(k�k)iY (k))

!
:
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Now apply expression (2.8) from Corollary 2.3 for

kY
i=1

 X
ai�0

hai
�
(�1iX(1) + � � � �kiX(k))(�(k�1)iY (1) + � � �+ �(k�k)iY (k))

�!

=

kY
i=1

 X
ai�0

hai

 
kX

p;q=1

�piX(p)�(k�q)iY (q)

!!

=
X

a1;::: ;ak�0

kY
i=1

hai

 
kX

p;q=1

�pi+(k�q)iX(p)Y (q)

!

=
X
m�0

hm

 
kX
i=1

kX
p;q=1

(�p+k�q)iX(p)Y (q)

!

where the last equality follows from expression (2.7) of Corollary 2.3, which allows

us to express a sum of products of homogeneous functions over di�erent alphabets

as a single homogeneous function over the sum of the original alphabets. We then

the sum to obtain

X
m�0

hm

 
kX

p;q=1

X(p)Y (q)

kX
i=1

(�p�q)i

!
=
X
m�0

hm

 
kX
p=1

kX(p)Y (p)

!
:

Again applying (2.7) gives

X
a1;::: ;ak�0

kY
i=1

hai(X
(1)Y (1) + � � �+X(k)Y (k))

=

 X
a�0

ha(X
(1)Y (1) + � � �+X(k)Y (k))

!k

=

 
kY
p=1

Y
r;s

1

1�X
(p)
r Y

(p)
s

!k

:

The Theorem then follows immediately from this and Theorem 3.4. �

3.5 Induction Products

The following theorem will be useful in the proof of the irreducible characters

of CkxSn.
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Theorem 3.6. Let �1; : : : ; �k be characters of CkxSm1
; : : : ; CkxSmk

, respectively,

with m1 + � � �+mk = n. Then

ch(�1 � � � � � �k "
CkxSn) = ch(�1) � � � ch(�k);

where �1 � � � � � �k "
CkxSn is the character obtained by inducing the product of

characters to CkxSn.

Proof. For a character �, let �(�(1); : : : ; �(k)) be the value of the character when

evaluated on the conjugacy class of CkxSn indexed by (�(1); : : : ; �(k)). Then we

have

ch(�) =
X

(�(1);::: ;�(k))`n

�(�(1); : : : ; �(k))
p�(1)(X

(1)) � � � p�(k)(X
(k))

z�(1) � � � z�(k)

=
1

knn!

X
(�(1);::: ;�(k))`n

kl(�
(1))+���+l(�(k))knn!

kl(�
(1))+���+l(�(k))

�(�(1); : : : ; �(k))
p�(1)(X

(1)) � � � p�(k)(X
(k))

z�(1) � � � z�(k)

=
1

knn!

X
!2CkxSn

kl(�
(1))+���+l(�(k))�(�(1); : : : ; �(k))p�(1)(X

(1)) � � � p�(k)(X
(k))

=< �; n >CkxSn ;

where for ! 2 CkxSn with cycle structure (�(1); : : : ; �(k)),

 n(!) = kl(�
(1))+���+l(�(k))p�(1)(X

(1)) � � � p�(k)(X
(k)):

A version of Frobenius Reciprocity holds using  n. We prove this �rst, then
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use it to complete the proof.



�1 � � � � � �k "

CkxSn;  n
�
CkxSn

=
1

knn!

X
g2CkxSn

�1 � � � � � �k "
CkxSn (g) n(g)

=
1

knn!

X
g2CkxSn

1

km1m1! � � � kmkmk!

X
x2CkxSn

�1 � � � � � �k(x
�1gx) n(g)

=
1

knn!

1

knm1! � � �mk!

X
x;y2CkxSn

�1 � � � � � �k(y) n(xyx�1)

=
1

knn!

1

knm1! � � �mk!

X
x;y2CkxSn

�1 � � � � � �k(y) n(y)

=
1

knm1! � � �mk!

X
y2CkxSn

�1 � � � � � �k(y) n(y)

=
1

knm1! � � �mk!

X
y2CkxSm1

�����CkxSmk

�1 � � � � � �k(y) n(y)

=


�1 � � � � � �k;  n #CkxSm1

�����CkxSmk

�
CkxSm1

�����CkxSmk

;

where  n #CkxSm1
�����CkxSmk

denotes the restriction of  n to CkxSm1
�� � ��CkxSmk

.

Using this, we have

ch(�1 � � � � � �k "
CkxSn) =



�1 � � � � � �k "

CkxSn ;  n
�
CkxSn

=


�1 � � � � � �k;  n #CkxSm1

�����CkxSmk

�
CkxSm1

�����CkxSmk

=

kY
i=1

0
@ 1

jCkxSmi
j

X
�i2CkxSmi

�i(�i) mi
(�i)

1
A

=< �1;  m1
>CkxSm1

� � � < �k;  mk
>CkxSmk

= ch(�1) � � � ch(�k)

This completes the proof. �
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Table 3.1: Linear characters of CkxSn applied at C(�(1);::: ;�(k)).

L(�i) L(� ) character applied at C(�(1);::: ;�(k))

1 1 1n 1

1 �m ��m (�m)1l(�
(1))+���+kl(�(1))

-1 1 �n (�1)n�l(�
(1))�����l(�(k))

-1 �m �n��m (�1)n�l(�
(1))�����l(�(k))(�m)1l(�

(1))+���+kl(�(1))

Table 3.2: Images of the linear characters of CkxSn under ch.

character image

1n hn(X
(1) + � � �+X(k))

��m hn(�
1mX(1) + � � �+ �kmX(k))

�n en(X
(1) + � � �+X(k))

�n��m en(�
1mX(1) + � � �+ �kmX(k)

3.6 Linear Characters of CkxSn

We can use the relations on the generators of CkxSn to calculate all of the

one-dimensional characters of CkxSn. Let L be a linear character of CkxSn. Since

�2
i
= 1, we have L(�2

i
) = L(1) = 1. On the other hand, L(�2

i
) = L(�i)

2 so

we must have L(�i) = �1. In addition, (�i�i+1)
3 = 1 so 1 = L((�i�i+1)

3) =

L(�i)
3L(�i+1)

3 = L(�i)L(�i+1). This along with the fact that �i; �i+1 = �1 gives

that L(�i) = L(�i+1). Thus we have L(�1) = L(�2) = � � � = L(�n�1) = �1. Also,

since � k = 1, 1 = L(1) = L(� k) = L(� )k so L(� ) 2 f1; �; : : : ; �k�1g.

Table 3.1 gives all of the linear characters of CkxSn when evaluated at the

conjugacy class C(�(1);::: ;�(k)). Note that here, m is taken to be in f1; : : : ; k � 1g.

Consider the images of the linear characters under the characteristic map. We

have the following theorem.

Theorem 3.7. The images of the linear characters of CkxSn under the character-

istic map ch de�ned by (1.2) are as given in Table 3.2.

Proof. We will give proofs of the images of 1n and ��m . The proofs of the other

two images are similar.
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(Proof of ch(1n))

ch(1n) = ch

0
@ X

(�(1);::: ;�(k))`n

1(�(1);::: ;�(k))

1
A

=
X

(�(1);::: ;�(k))`n

ch(1(�(1);::: ;�(k)))

=
X

(�(1);::: ;�(k))`n

p
�(1)

(X(1)) � � � p
�(k)

(X(k))

z
�(1)
� � � z

�(k)

=
X

a1+���+ak=n

0
@ X
�(1)`a1

p�(1)(X
(1))

z�(1)

1
A � � �

0
@ X
�(k)`ak

p�(k)(X
(k))

z�(k)

1
A

=
X

a1+���+ak=n

ha1(X
(1)) � � �hak(X

(k)) = hn(X
(1) + � � �+X(k)):

(Proof of ch(��m))

ch(��m) = ch

0
@ X

(�(1);::: ;�(k))`n

(�m)1l(�
(1))+���+kl(�(k))1(�(1);::: ;�(k))

1
A

=
X

(�(1);::: ;�(k))`n

(�m)1l(�
(1))+���+kl(�(k))ch(1(�(1);::: ;�(k)))

=
X

(�(1);::: ;�(k))`n

(�m)1l(�
(1))+���+kl(�(k))p�(1)(X

(1)) � � � p�(k)(X
(k))

z�(1) � � � z�(k)

=
X

a1+���+ak=n

kY
i=1

0
@ X
�(i)`ai

(�m)il(�
(i))p�(i)(X

(i))

z�(i)

1
A

=
X

a1+���+ak=n

kY
i=1

0
@ X
�(i)`ai

p�(i)(�
imX(i))

z�(i)

1
A

=
X

a1+���+ak=n

ha1(�
1mX(1)) � � �hak(�

kmX(k))

= hn(�
1mX(1) + � � �+ �kmX(k)):

�
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3.7 The Images of Sn-Characters Under ch

In this section we determine the images under the characteristics map of several

characters of Sn viewed as characters of CkxSn. We prove a number of lemmas

that will be necessary for the proof of the irreducible characters of CkxSn.

If � is an irreducible character of Sn, we may regard it as a character of CkxSn

in the following way. For the generators �i, let �
(�i) be de�ned in the same way

as for �i 2 Sn. In addition, set �(� ) equal to the identity. We then have

�


(�(1);::: ;�(k))
= �



(�(1)[���[�(k))
:

We then have the following lemma.

Lemma 3.8. Let � be an irreducible character of Sn. Then

ch(�) = s(X
(1) + � � �+X(k)):

Proof. We have that

ch(�) =
X

(�(1);::: ;�(k))`n

�
(�(1)[���[�(k))

p�(1)(X
(1)) � � � p�(k)(X

(k))

z�(1) � � � z�(k)
:

Now for an alphabet W , consider the sum

X


ch(�)s(W ) =
X


X
(�(1);::: ;�(k))`n

�


(�(1)[���[�(k))

p�(1)(X
(1)) � � � p�(k)(X

(k))

z�(1) � � � z�(k)
s(W ):
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Recalling that
P


�
�
s(Z) = p�(Z), we can rewrite this as

X


ch(�)s(W )

=
X

(�(1);::: ;�(k))`n

p
�(1)

(X(1)) � � � p
�(k)

(X(k))

z
�(1)
� � � z

�(k)

X


�


(�(1)[���[�(k))
s(W )

=
X

(�(1);::: ;�(k))

p
�(1)

(X(1)) � � � p
�(k)

(X(k))

z
�(1)
� � � z

�(k)

p(�(1)[���[�(k))(W )

=

kY
i=1

 X
�(i)

1

z�(i)
p�(i)(X

(i))p�(i)(W )

!

=
Y
r;s

1

1 �X
(1)
r Ws

� � �
1

1 �X
(k)
r Ws

=
X


s(X
(1) + � � �+X(k))s(W ):

Equating coe�cients of s(W ) gives the result. �

For m = 1; 2; : : : ; k, de�ne a homomorphism ��m on �Wk;n
by

��m : �Wk;n
�! �Wk;n

;

��mpr(X
(i)) = pr(�

miX(i)):

We then have

��ms�(X
(i)) = ��m

X
�

��
�

z�
p�(X

(i)) =
X
�

��
�

z�
p�(�

miX(i)) = s�(�
miX(i)):

We now have the following lemma regarding the homomorphism ��m.

Lemma 3.9. Let � be a character of CkxSn and let ��m be the linear character of

CkxSn described in Tables 3.1 and 3.2. If f = ch(�), then ��mf = ch(��m�).

Proof. By linearity, it is enough to show this for the indicator function 1(�(1);::: ;�(k)).

By de�nition,

ch(1(�(1);::: ;�(k))) =
p
�(1)

(X(1)) � � � p
�(k)

(X(k))

z�(1) � � � z�(k)
:
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Thus

��mch(1(�(1);::: ;�(k))) = ��m

p
�(1)

(X(1)) � � � p
�(k)

(X(k))

z
�(1)
� � � z

�(k)

=
p
�(1)

(�1mX(1)) � � � p
�(k)

(�kmX(k))

z
�(1)
� � � z

�(k)

:

On the other hand,

ch(��m1(�(1);::: ;�(k))) = (�m)1l(�
(1))+���+kl(�(k))p�(1)(X

(1)) � � � p
�(k)

(X(k))

z
�(1)
� � � z

�(k)

=
p�(1)(�

1mX(1)) � � � p�(k)(�
kmX(k))

z�(1) � � � z�(k)
:

The combination of these two statements proves the lemma. �

We now use the results of the previous two lemmas to determine the image of

��m�
� under ch.

Lemma 3.10. Let �� be an irreducible character of Sn and let ��m be the linear

character of CkxSn described in Tables 3.1 and 3.2. Then

ch(��m�
�) = s�(�

1�mX(1) + � � �+ �k�mX(k)):

Proof. By Lemma 3.9,

ch(��m�
�) = ��mch(�

�):

But Lemma 3.8 gives that

��mch(�
�) = ��ms�(X

(1) + � � � +X(k)):

We then have

ch(��m�
�) = ��ms�(X

(1) + � � �+X(k))

= ��m

X
�(1)��(2)������(k�1)��

s�(1)(X
(1))s�(2)=�(1)(X

(2)) � � � s�=�(k�1)(X
(k))

=
X

�(1)��(2)������(k�1)��

s�(1)(�
1�mX(1))s�(2)=�(1)(�

2�mX(2)) � � � s�=�(k�1)(�
k�mX(k))

= s�(�
1�mX(1) + � � �+ �k�mX(k));

completing the proof. �
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3.8 The Irreducible Characters

We are now ready to characterize the irreducible characters of CkxSn.

Theorem 3.11. Let ��m be the linear character of CkxSn described in Tables 3.1

and 3.2. Then the irreducible characters of CkxSn are

(��1�
�
(1)

� � � � � ��k�
�
(k)

) "CkxSn;

their characteristics are

kY
i=1

s
�(i)

(�1iX(1) + � � �+ �kiX(k));

and their degrees are �
n

m1; : : : ;mk

�
f�

(1)

� � � f�
(k)

;

where the ��
(i)

s are irreducible characters of symmetric groups and f�
(i)

is the

number of standard tableaux of shape �(i).

Proof. We will abuse notation by letting

�(�(1);::: ;�(k)) = (��1�
�(1)

� � � � � ��k�
�(k)) "CkxSn;

s(�(1);::: ;�(k))(X
(1); : : : ;X(k)) =

kY
i=1

s
�(i)

(�1�iX(1) + � � �+ �k�iX(k));

and

s(�(1);::: ;�(k))(X
(1); : : : ;X(k)) =

kY
i=1

s
�(i)

(�(k�1)iX(1) + � � �+ �(k�k)iX(k)):

(Characteristic) From Theorem 3.6 and Lemmas 3.8 and 3.10, it is clear that

ch(�(�(1);::: ;�(k))) = s(�(1);::: ;�(k))(X
(1); : : : ;X(k)):

(Irreducibility) We have that

�(�(1);::: ;�(k)) =
X

(�(1);::: ;�(k))

�
(�(1);::: ;�(k))

(�(1);::: ;�(k))
1(�(1);::: ;�(k)):
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Then

ch(�(�(1);::: ;�(k))) = s(�(1);::: ;�(k))(X
(1); : : : ;X(k))

=
X

(�(1);::: ;�(k))

�
(�(1);::: ;�(k))

(�(1);::: ;�(k))

p
�(1)

(X(1)) � � � p
�(k)

(X(k))

z
�(1)
� � � z

�(k)

:

Similarly,

ch(�(�(1);::: ;�(k))) = s(�(1);::: ;�(k))(X
(1); : : : ;X(k))

=
X

(�(1);::: ;�(k))

�
(�(1);::: ;�(k))

(�(1);::: ;�(k))

p�(1)(X
(1)) � � � p�(k)(X

(k))

z�(1) � � � z�(k)
:

Thus by Theorem 3.5,

kY
p=1

Y
r;s

�
1

1 �X
(p)
r Y

(p)
s

�k

=
X

(�(1);::: ;�(k))

s(�(1);::: ;�(k))(X
(1); : : : ;X(k))s(�(1);::: ;�(k))(Y

(1); : : : ; Y (k))

= hSi


S
�T

=

�
P

�

z
�(1)
� � � z

�(k)

��
P

�

z
�(1)
� � � z

�(k)

�T

=

�
P

z�(1) � � � z�(k)

�
h�i

�
�

z
�(1)
� � � z

�(k)
kl(�

(1))+���+l(�(k))

�T D
kl(�

(1))+���+l(�(k))P
ET

:

On the other hand,

kY
p=1

Y
r;s

�
1

1 �X
(p)
r Y

(p)
s

�k

=
X

(�(1);::: ;�(k))

kl(�
(1))+���+l(�(k))

z�(1) � � � z�(k)
p�(1)(X

(1)) � � � p�(k)(X
(k))p�(1)(Y

(1)) � � � p�(k)(Y
(k))

=

�
P

z�(1) � � � z�(k)

�D
kl(�

(1))+���+l(�(k))P
ET

:

Since fp
�(1)

(X(1)) � � � p
�(k)

(X(k))g and fs(�(1);::: ;�(k))(X
(1); : : : ;X(k))g are bases, we

have

h�i

�
�

z�(1) � � � z�(k)k
l(�(1))+���+l(�(k))

�T
= I: (3.5)
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The left hand side of (3.5) is

X
(�(1);::: ;�(k))

�
(�(1);::: ;�(k))

�(1);::: ;�(k))
�
(�(1);::: ;�(k))

�(1);::: ;�(k))

1

z
�(1)
� � � z

�(k)
k(l(�

(1))+���+l(�(k))

=
1

knn!

X
(�(1);::: ;�(k))

�
(�(1);::: ;�(k))

�(1);::: ;�(k))
�
(�(1);::: ;�(k))

�(1);::: ;�(k))
jC(�(1);::: ;�(k))j

=
1

knn!

X
�2CkxSn

�(�(1);::: ;�(k))(�)�(�(1);::: ;�(k))(�)

=
D
�(�(1);::: ;�(k)); �(�(1);::: ;�(k))

E
CkxSn

:

Thus we have

D
�(�(1);::: ;�(k)); �(�(1);::: ;�(k))

E
CkxSn

= �
�
(�(1); : : : ; �(k)) = (�(1); : : : ; �(k))

�
:

f�(�(1);::: ;�(k))g thus has the right number of orthogonal characters and is therefore

the set of irreducible characters of CkxSn.

(Degree) Recall that if � is a character, then �(e) gives the degree of � for the

identity element e. We have



�; 1(;;::: ;;;1n)

�
CkxSn

=
1

knn!

X
�2CkxSn

�(�)1(;;::: ;;;1n)(�) =
1

knn!
�(e);

so

�(e) = knn!


�; 1(;;::: ;;;1n)

�
CkxSn

:
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Thus we compute this inner product for � = �(�(1);::: ;�(k)).

D
�(�(1);::: ;�(k)); 1(;;::: ;;;1n)

E
CkxSn

=

*
kY
i�1

s
�(i)

(�1iX(1) + � � �+ �kiX(k));
p1n(X

(k))

n!

+
�

=

*
kY
i=1

X
�(i;1)��(i;2)������(i;k�1)��

s
�(i;1)(�

1iX(1))s
�(i;2)=�(i;1)(�

2iX(2))

� � � s
�=�(i;k�1)

(�kiX(k));
p1n(X

(k))

n!

+
�

=

*
kY
i=1

X
�(i;1)��(i;2)������(i;k�1)��

kY
j=1

X
�(j)

��
(i;j)

�(j)

p�(j)(�
jiX(j))

z�(j)
;
p1n(X

(k))

n!

+
�

=

*
kY
i=1

X
�(i)`j�(i)j

��
(i)

�(i)

p
�(i)

(X(k))

z�(i)
;
p1n(X

(k))

n!

+
�

=

*
kY
i=1

��
(i)

1mi

p1mi (X(k))

mi!
;
p1n(X

(k))

n!

+
�

=
f�

(1)

� � � f�
(k)

m1! � � �mk!n!



p1n(X

(k)); p1n(X
(k))
�
�

=
f�

(1)

� � � f�
(k)

m1! � � �mk!n!

n!

kn
:

We therefore have

�(�(1);::: ;�(k))(e) = knn!
f�

(1)

� � � f�
(k)

m1! � � �mk!n!

n!

kn
=

�
n

m1; : : : ;mk

�
f�

(1)

� � � f�
(k)

;

the desired value. �



Chapter 4

Transition Matrices Between

Bases of the C3xSn-Symmetric

Functions

In this chapter, we consider some of the bases of �3;n, the space of symmetric

functions associated with C3xSn described in the previous chapter, and determine

transition matrices between the bases.

Because of considerations of space, denote a basis fa�(X +Y +Z)b�(X + �Y +

�2Z)c�(X + �2Y + �Z)g with (�; �; �) ` n by a�~b�ĉ�. Likewise, we denote the basis

p�(X)p�(Y )p�(Z) by p�~p�p̂� . Then a number of the bases of �3;n are given in Table

4.1.

We denote by M(a~aâ; b~bb̂) the matrix that transforms the basis vector

Table 4.1: Some of the bases of �3;n.

e�~e�ê� h�~h�ĥ� m� ~m�m̂� f� ~f�f̂� s�~s�ŝ� p�~p�p̂�

e�~e�ĥ� e�~h�ê� h�~e�ê� e�~h�ĥ� h�~e�ĥ� h�~e�ê�

m� ~m�f̂� m�
~f�m̂� f� ~m�m̂� m�

~f�f̂� f� ~m�f̂� f� ~m�m̂�

64
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< a�~a�â� > into the basis vector < b�~b�b̂� >. That is,

< b�~b�b̂� >=< a�~a�â� > M(a~aâ; b~bb̂):

Then the (�; �; )(�; �; �)-entry of M(a~aâ; b~bb̂) is de�ned by

b�~b�b̂� =
X

(�;�;)`n

a�~a� âM(a~aâ; b~bb̂)(�;�;)(�;�;�):

The transition matrices between all pairs of bases of �3;n that do not involve the

basis p�~p�p̂� consist of triples of transition matrices for the Sn case. Because of this

and the fact that there are 306 transition matrices, we will only consider transition

matrices involving the basis p�~p�p̂� . We will give the following transition matrices:

M(h~hĥ; p~pp̂), M(p~pp̂; h~hĥ), M(e~eê; p~pp̂), M(p~pp̂; e~eê), M(s~sŝ; p~pp̂), M(p~pp̂; s~sŝ),

M(m ~mm̂; p~pp̂), M(p~pp̂;m ~mm̂), M(f ~f f̂ ; p~pp̂), and M(p~pp̂; f ~ff̂ ). The proofs for

the other transition matrices are similar to these.

4.1 M(h~hĥ; p~pp̂)

Recall that a �-brick tabloid of shape � is a tabloid in the shape of � �lled

with bricks of sizes �1; �2; : : : ; �l(�) such that each brick lies horizontally in a row.

The set of all �-brick tabloids of shape � is denoted by B�;�. We can weight these

tabloids in the following way. The total weight is

w(B�;�) =
X

T2B�;�

w(T );

where the weight of a tabloid T is

w(T ) =
Y
b2T

wT (b);

and the weight of each brick in the tabloid is given by

wT (b) =

8<
:jbj; if b is at the end of a row;

1; otherwise.
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We begin with the following expression, which may be found in [7].

pn =
X
�`n

(�1)l(�)�1w(B�;(n))h�:

From this we obtain the following expressions.

pn(X) + pn(Y ) + pn(Z) = pn(X + Y + Z) =X
�`n

(�1)l(�)�1w(B�;(n))h�(X + Y + Z); (4.1)

pn(X) + �pn(Y ) + �2pn(Z) = pn(X + �Y + �2Z) =X
�`n

(�1)l(�)�1w(B�;(n))h�(X + �Y + �2Z); (4.2)

pn(X) + �2pn(Y ) + �pn(Z) = pn(X + �2Y + �Z) =X
`n

(�1)l()�1w(B;(n))h(X + �2Y + �Z): (4.3)

If we sum (4.1) + (4.2) + (4.3), we get

3pn(X) =
X
�`n

(�1)l(�)�1w(B�;(n))h�(X + Y + Z)

+
X
�`n

(�1)l(�)�1w(B�;(n))h�(X + �Y + �2Z)

+
X
`n

(�1)l()�1w(B;(n))h(X + �2Y + �Z): (4.4)

Summing (4.1) + �2(4.2) + �(4.3) gives

3pn(Y ) =
X
�`n

(�1)l(�)�1w(B�;(n))h�(X + Y + Z)

+
X
�`n

(�1)l(�)�1�2w(B�;(n))h�(X + �Y + �2Z)

+
X
`n

(�1)l()�1�w(B;(n))h(X + �2Y + �Z): (4.5)
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�

�

�

Figure 4.1: An illustration of � � � � �.

Summing (4.1) + �(4.2) + �2(4.3) gives

3pn(Z) =
X
�`n

(�1)l(�)�1w(B�;(n))h�(X + Y + Z)

+
X
�`n

(�1)l(�)�1�w(B�;(n))h�(X + �Y + �2Z)

+
X
`n

(�1)l()�1�2w(B;(n))h(X + �2Y + �Z): (4.6)

We now interpret products of the expressions (4.4), (4.5), and (4.6) combina-

torially. If �, �, and � are partitions, � � � � � is the diagram which results from

consecutively placing the lower right corner of one partition at the upper left corner

of the next. This is illustrated in Figure 4.1.

Let F�;�;
����� be the set of tabloids of shape � � � � � �lled with �-bricks of sizes

�1; �2; : : : ; �l(�), �-bricks of sizes �1; �2; : : : ; �l(�), and -bricks of sizes

1; 2; : : : ; l(), such that each row contains all bricks of the same type. An exam-

ple of an element of F�;�;
����� with � = (3; 52), � = (1; 42; 6), � = (2; 4), � = (12; 24; 3),

� = (1; 2; 32), and  = (15; 22; 3) is given in Figure 4.2.

We use (4.4), (4.5), and (4.6) to write a product of power symmetric functions
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�-brick

�-brick

-brick

Figure 4.2: An example of an element of F�;�;
�����.

in terms of a weight on elements of F�;�;
�����.

3l(�)+l(�)+l(�)p�(X)p�(Y )p�(Z)

h�~h�ĥ
=

X
f2F

�;�;

�����

W1(f); (4.7)

where W1(f) is de�ned by the product over all bricks b in f

W1(f) =
Y
b2f

w1(b);

and where w1(b) is de�ned according to the following cases.

� If b is an �-brick,

w1(b) =

8<
:
jbj; b is at the end of a row,

�1; otherwise.
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� If b is a �-brick,

w1(b) =

8>>>>>>><
>>>>>>>:

jbj; b is at the end of a row in �;

�2jbj; b is at the end of a row in �;

�jbj; b is at the end of a row in �;

�1; otherwise.

� If b is a -brick,

w1(b) =

8>>>>>>><
>>>>>>>:

jbj; b is at the end of a row in �;

�jbj; b is at the end of a row in �;

�2jbj; b is at the end of a row in �;

�1; otherwise.

It is helpful to rewrite this in terms of a more standard weight, de�ned by

w(f) =
Y
b2f

w(b);

where

w(b) =

8<
:
jbj; b is at the end of a row,

1; otherwise:

Then (4.7) becomes

3l(�)+l(�)+l(�)p�(X)p�(Y )p�(Z)

h�~h�ĥ

=
X

f2F
�;�;

�����

(�1)l(�)+l(�)+l()�l(�)�l(�)�l(�)�2l
�(�)+l�(�)+l(�)+2l(�)w(f);

where l�(�) is the number of �-rows occurring in �, and l�(�), l(�), and l(�) are

de�ned similarly. This gives the following expression for the transition matrix.

M(h~hĥ; p~pp̂)(�;�;)(�;�;�)

=
X

f2F
�;�;

�����

(�1)l(�)+l(�)+l()�l(�)�l(�)�l(�)

3l(�)+l(�)+l(�)
�2l

�(�)+l�(�)+l(�)+2l(�)w(f):
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1 2 2

3 3 4 4 4

1 3 3

2 2 4 4 4

4 4 4

1 2 2 3 3

bricks: 1 2 2 3 3 4 4 4

Figure 4.3: The (1,2,2,3)-brick tabloids of shape (3,5).

4.2 M(p~pp̂; h~hĥ)

An ordered �-brick tabloid of shape � is similar to a �-brick tabloid of shape

� in that it also consists of arrangements of bricks of lengths �1; �2; : : : ; �l(�) into

the shape �. In the ordered case, however, the bricks are labeled, with the smaller

bricks getting the smaller labels. Then, when the bricks are placed in the tabloid,

the labels on the bricks must increase left to right in each row. The number

of ordered �-brick tabloids of shape � is denoted OB�;�. As an example, the

(1; 2; 2; 3)-brick tabloids of shape (3; 5) are given in Figure 4.3.

We begin with the following expression, which is given in [7].

h�(X + Y + Z) =
X
�`j�j

OB�;�

z�
p�(X + Y + Z)

=
X
�`j�j

OB�;�

z�

l(�)Y
i=1

(p�i(X) + p�i(Y ) + p�i(Z)) :

If we let [n] = f1; 2; : : : ; ng, and let S + T be the union of two disjoint sets S and
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T , we can rewrite the above expression as

X
�`j�j

OB�;�

z�

X
S+T+U=[l(�)]

 Y
i2S

p�i(X)

! Y
i2T

p�i(Y )

! Y
i2U

p�i(Z)

!
: (4.8)

If � = 1m12m2 � � � nmn, � = 1a12a2 � � �nan, � = 1b12b2 � � �nbn , and  = 1c12c2 � � � ncn,

such that 0 � ai; bi; ci and ai + bi + ci = mi, then we write � + � +  = �. The

number of ways �, �, and  can be rearranged to form the partition � is C�

�;�;

where

C
�

�;�;
=

�
m1

a1; b1; c1

��
m2

a2; b2; c2

�
� � �

�
mn

an; bn; cn

�
:

We use this to rewrite (4.8) as

h�(X + Y + Z) =
X
�`j�j

OB�;�

z�

X
�+�+=�

C�

�;�;
p�(X)p�(Y )p(Z):

Thus

h�(X + Y + Z)

p�~p� p̂
=
OB�+�+;�

z�+�+

nY
i=1

�
ai + bi + ci

ai; bi; ci

�

= OB�+�+;�

nY
i=1

1

iai+bi+ci(ai + bi + ci)!

(ai + bi + ci)!

ai!bi!ci!
=

1

z�z�z
OB��+;�: (4.9)

Similar arguments give the following expressions:

h�(X + �Y + �2Z)

p�~p p̂�
=
�l( )+2l(�)

z�z z�
OB�+ +�;�; (4.10)

h�(X + �Y + �2Z)

p�~p� p̂!
=
�2l(�)+l(!)

z�z�z!
OB�+�+!;� : (4.11)
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Combining (4.9), (4.10), and (4.11) gives

h�~h�ĥ� =
X

(�;�;)`j�j

OB�+�+;�

z�z�z
p�~p� p̂

�
X

(�; ;�)`j�j

�l( )+2l(�)OB�+ +�;�

z�z z�
p�~p p̂�

�
X

(�;�;!)`j�j

�2l(�)+l(!)OB�+�+!;�

z�z�z!
p� ~p� p̂!

=
X

(�;�;)`j�j
(�; ;�)`j�j
(�;�;!)`j�j

�l( )+2l(�)+2l(�)+l(!)OB�+�+;�OB�+ +�;�OB�+�+!;�

z�z�zz�z z�z�z�z!

� p�+�+� ~p�+ +� p̂+�+! :

We then have the transition matrix

M(p~pp̂; h~hĥ)(�;�;�)(�;�;�) =
h�~h�ĥ�

p� ~p� p̂�

=
X

(�;�;)`j�j
(�; ;�)`j�j
(�;�;!)`j�j
�+�+�=�
�+ +�=�
+�+!=�

�l( )+2l(�)+2l(�)+l(!)OB�+�+;�OB�+ +�;�OB�+�+!;�

z�z�zz�z z�z�z�z!
:

4.3 M(e~eê; p~pp̂)

The transition matrix M(e~eê; p~pp̂) is very similar to M(h~hĥ; p~pp̂). The di�er-

ence comes in the weight attached to elements of F�;�;
�����. Again, we begin with an

expression from [7].

pn =
X
�

(�1)n�l(�)w(B�;(n))e�:
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This gives the expressions

pn(X) + pn(Y ) + pn(Z) = pn(X + Y + Z) =X
�`n

(�1)n�l(�)w(B�;(n))e�(X + Y + Z); (4.12)

pn(X) + �pn(Y ) + �2pn(Z) = pn(X + �Y + �2Z) =X
�`n

(�1)n�l(�)w(B�;(n))e�(X + �Y + �2Z); (4.13)

pn(X) + �2pn(Y ) + �pn(Z) = pn(X + �2Y + �Z) =X
`n

(�1)n�l()w(B;(n))e(X + �2Y + �Z): (4.14)

If we sum (4.12) + (4.13) + (4.14), we get

3pn(X) =
X
�`n

(�1)n�l(�)w(B�;(n))e�(X + Y + Z)

+
X
�`n

(�1)n�l(�)w(B�;(n))e�(X + �Y + �2Z)

+
X
`n

(�1)n�l()w(B;(n))e(X + �2Y + �Z): (4.15)

Summing (4.12) + �2(4.13) + �(4.14) gives

3pn(Y ) =
X
�`n

(�1)n�l(�)w(B�;(n))e�(X + Y + Z)

+
X
�`n

(�1)n�l(�)�2w(B�;(n))e�(X + �Y + �2Z)

+
X
`n

(�1)n�l()�w(B;(n))e(X + �2Y + �Z): (4.16)
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Summing (4.12) + �(4.13) + �2(4.14) gives

3pn(Z) =
X
�`n

(�1)n�l(�)w(B�;(n))e�(X + Y + Z)

+
X
�`n

(�1)n�l(�)�w(B�;(n))e�(X + �Y + �2Z)

+
X
`n

(�1)n�l()�2w(B;(n))e(X + �2Y + �Z): (4.17)

We again use weights on elements of F�;�;
����� to interpret products of (4.15),

(4.16), and (4.17). Here, if (�; �; �) ` n, we have

3l(�)+l(�)+l(�)p�~p�p̂�

e�~e�ê
= (�1)n

X
f2F

�;�;

�����

W2(f); (4.18)

where W2(f) is the product over all bricks b in f

W2(f) =
Y
b2f

w2(b);

and where w2(b) is de�ned by the following cases.

� If b is an �-brick,

w2(b) =

8<
:
�jbj; b is at the end of a row,

�1; otherwise.

� If b is a �-brick,

w2(b) =

8>>>>>>><
>>>>>>>:

�jbj; b is at the end of a row in �,

��2jbj; b is at the end of a row in �,

��jbj; b is at the end of a row in �,

�1; otherwise.
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� If b is a -brick,

w2(b) =

8>>>>>>><
>>>>>>>:

�jbj; b is at the end of a row in �,

��jbj; b is at the end of a row in �,

��2jbj; b is at the end of a row in �,

�1; otherwise.

We write this weight in terms of the standard weight to rewrite (4.18) as

3l(�)+l(�)+l(�)p�~p�p̂�

e�~e�ê
=

(�1)n
X

f2F
�;�;

�����

(�1)l(�)+l(�)+l()�2l
�(�)+l�(�)+l(�)+2l(�)w(f): (4.19)

Thus we have the transition matrix

M(e~eê; p~pp̂)(�;�;)(�;�;�) =
X

f2F
�;�;

�����

(�1)n�l(�)�l(�)�l()�2l
�(�)+l�(�)+l(�)+2l(�)

3l(�)+l(�)+l(�)
w(f):

4.4 M(p~pp̂; e~eê)

The transition matrix M(p~pp̂; e~eê) is very similar to M(p~pp̂; h~hĥ). The only

di�erence is in the powers of �1. We start with the expression

e� =
X
�`j�j

(�1)j�j�l(�)
OB�;�

z�
p�;

which can be found in [7]. The argument is exactly the same as before, with the

slight change of sign. This gives the following expressions.

e�(X + Y + Z)

p�~p� p̂
=

(�1)j�j�l(�)�l(�)�l()

z�z�z
OB�+�+;�; (4.20)

e�(X + �Y + �2Z)

p�~p p̂�
=

(�1)j�j�l(�)�l( )�l(�)�(l( )+2l(�)

z�z z�
OB�+ +�;� ; (4.21)
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e�(X + �2Y + �Z)

p� ~p� p̂!
=

(�1)j�j�l(�)�l(�)�l(!)�(2l(�)+l(!))

z�z�z!
OB�+�+!;� : (4.22)

If we combine the expressions (4.20), (4.21), and (4.22), and simplify them as in

the previous case, we get the following transition matrix.

M(p~pp̂; e~eê)(�;�;�)(�;�;�) =X
(�;�;)`j�j
(�; ;�)`j�j
(�;�;!)`j�j
�+�+�=�
�+ +�=�
+�+!=�

(�1)n�l(�)�l(�)�l()�l(�)�l( )�l(�)�l(�)�l(�)�l(!)�l( )+2l(�)+2l(�)+l(!)

z�z�zz�z z�z�z�z!

�OB�+�+;�OB�+ +�;�OB�+�+!;� :

4.5 M(s~sŝ; p~pp̂) and M(p~pp̂; s~sŝ)

We use the properties of dual bases and scalar products described in our study

of the representation theory of C3xSn to determineM(s~sŝ; p~pp̂). Begin by writing

the element of the transition matrix as the scalar product below.

M(s~sŝ; p~pp̂)(�;�;)(�;�;�) = hp�~p�p̂� ; s�~s� ŝi� =


1�;�;�z�z�z�; �

(�;�;)
�
C3xSn

:

Recall that �(�;�;) is the irreducible character of C3xSn indexed by (�; �; ). This

scalar product is then equal to

M(s~sŝ; p~pp̂)(�;�;)(�;�;�)

=
1

3nn!

X
�2C3xSn

1�;�;�(�)z�z�z��(�;�;)(�)

=
1

3nn!
jC�;�;�jz�z�z��

(�;�;)

(�;�;�)(�)

=
1

3nn!

3nn!

3l(�)+l(�)+l(�)z�z�z�
z�z�z��

(�;�;)

(�;�;�)(�)

=
�
(�;�;)

(�;�;�)(�)

3l(�)+l(�)+l(�)
:
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We use the fact that s�~s�ŝ� and p�~p�p̂� are self-dual bases to determine

M(p~pp̂; s~sŝ). This gives

M(p~pp̂; s~sŝ)(�;�;)(�;�;�) =M(s~sŝ; p~pp̂)T(�;�;)(�;�;�) �
3l(�)+l(�)+l()

z�z�z

=
�
(�;�;�)

(�;�;)

3l(�)+l(�)+l()
�
3l(�)+l(�)+l()

z�z�z
=
�
(�;�;�)

(�;�;)

z�z�z

We now give an analog of the Murnagham-Nakayama rule to interpret the

character �(�;�;) combinatorially. Above, we showed that

3l(�)+l(�)+l(�)p�~p�p̂�

s�~s� ŝ
= �

(�;�;)

(�;�;�):

We now interpret this coe�cient in terms of rim hook tabloids.

Start with the following relation (see [6]).

pns� =
X
���

(�1)r(�=�)�1s�;

where the sum is over all � such that �=� is a rim hook of length n, and r(�=�)

is the number of rows occupied by the rim hook. We then have the following

identities.

pn(X + Y + Z)s�~s�ŝ =
X
���

(�1)r(�=�)�1s�~s� ŝ; (4.23)

pn(X + �Y + �2Z)s�~s� ŝ =
X
���

(�1)r(�=�)�1s�~s�ŝ; (4.24)

pn(X + �2Y + �Z)s�~s� ŝ =
X
��

(�1)r(�=�)�1s�~s� ŝ�: (4.25)

Then, summing (4.23)+(4.24)+(4.25), we obtain

3pn(X)s�~s�ŝ =
X
���

(�1)r(�=�)�1s�~s� ŝ

+
X
���

(�1)r(�=�)�1s�~s�ŝ +
X
��

(�1)r(�=�)�1s�~s�ŝ�: (4.26)
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Summing (4.23)+�2(4.24)+�(4.25), we obtain

3pn(Y )s�~s�ŝ =
X
���

(�1)r(�=�)�1s�~s� ŝ

+
X
���

�2(�1)r(�=�)�1s�~s�ŝ +
X
��

�(�1)r(�=�)�1s�~s�ŝ�: (4.27)

Summing (4.23)+�(4.24)+�2(4.25), we obtain

3pn(Z)s�~s� ŝ =
X
���

(�1)r(�=�)�1s�~s�ŝ

+
X
���

�(�1)r(�=�)�1s�~s�ŝ +
X
��

�2(�1)r(�=�)�1s�~s�ŝ�: (4.28)

The expressions (4.26), (4.27), and (4.28) give rules to express the coe�cient of

s�~s�ŝ as a sum of weights of a row brick tabloid of shape � � � �  with hooks of

lengths �1; : : : ; �l(�); �1; : : : ; �l(�); �1; : : : ; �l(�). We have ~w(T ) =
Q

h2T ~w(h) where

~w(h) is de�ned as follows, depending on which part of the shape � �� � the hook

appears in. Note that r(h) denotes the number of rows that a hook h occupies.

� If h lies in �, then ~w(h) = (�1)r(h)�1.

� If h lies in �, then

~w(h) =

8>>>><
>>>>:
(�1)r(h)�1; h corresponds to a �i;

�2(�1)r(h)�1; h corresponds to a �i;

�(�1)r(h)�1; h corresponds to a �i:

� If h lies in , then

~w(h) =

8>>>><
>>>>:
(�1)r(h)�1; h corresponds to a �i;

�(�1)r(h)�1; h corresponds to a �i;

�2(�1)r(h)�1; h corresponds to a �i:
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In all cases the weight has a factor of (�1)r(h)�1, the usual sign for a rim hook.

Thus we can write ~w(T ) as

~w(T ) = sgn(T )�2h
�(�)+h�()+h� (�)+2h�();

where h�(�) denotes the number of hooks appearing in � that correspond to a �i,

and so on. This then gives the following theorem.

Theorem 4.1. Let (�; �; ) ` n and (�; �; �) ` n. Then

�
(�;�;)

(�;�;�) =
X

T2RH
����

(�;�;�)

�2h
�(�)+h�()+h�(�)+2h�()sgn(T );

where RH
����

(�;�;�) is the set of rim hook tabloids of shape � � � �  �lled with hooks

of lengths �1; : : : ; �l(�); �1; : : : ; �l(�); �1; : : : ; �l(�).

4.6 M(p~pp̂;m ~mm̂) and M(m ~mm̂; p~pp̂)

We use the fact that m� ~m�m̂� and h�~h�ĥ� are dual bases. To �nd

M(p~pp̂;m ~mm̂), begin with the relationship

hp�~p�p̂�i =
D
h�~h�ĥ

E
M(h~hĥ; p~pp̂):

Taking duals gives

hm� ~m�m̂�i =

�
3l(�)+l(�)+l()

z�z�z
p�~p� p̂

�
M(h~hĥ; p~pp̂)T :

Thus we have

M(p~pp̂;m ~mm̂)(�;�;)(�;�;�) =
3l(�)+l(�)+l()

z�z�z
M(h~hĥ; p~pp̂)(�;�;�)(�;�;)

=
X

f2F
�;�;�

����

(�1)l(�)+l(�)+l()�l(�)�l(�)�l(�)�2l
�(�)+l�(�)+l�()+2l�()

z�z�z
w(f): (4.29)

Note that here our objects are diagrams of shape ��� � �lled with bricks of type

�, �, and � such that each row contains all �-, �-, or -bricks.
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Similarly, to �nd M(m ~mm̂; p~pp̂), begin with

D
h�~h�ĥ�

E
= hp�~p� p̂iM(p~pp̂; h~hĥ):

Taking duals gives�
3l(�)+l(�)+l(�)

z�z�z�
p�~p�p̂�

�
= hm� ~m�m̂iM(p~pp̂; h~hĥ)T :

Thus we have

M(m ~mm̂; p~pp̂)(�;�;�)(�;�;�) =
z�z�z�

3l(�)+l(�)+l(�)
M(p~pp̂; h~hĥ)(�;�;�)(�;�;�)

=
X

(�;�;)`j�j
(�; ;�)`j� j
(�;�;!)`j�j
�+�+�=�
�+ +�=�
+�+!=�

�l( )+2l(�)+2l(�)+l(!)z�z�z�

3l(�)+l(�)+l(�)z�z�zz�z z�z�z�z!
OB�+�+;�OB�+ +�;�OB�+�+!;�:

4.7 M(p~pp̂; f ~ff̂ ) and M(f ~ff̂ ; p~pp̂)

As in the previous section, we use dual bases. Here, we use that f� ~f�f̂� and

e�~e�ê� are dual. To �nd M(p~pp̂; f ~f f̂), we begin with the relationship

hp�~p�p̂� i = he�~e�êiM(e~eê; p~pp̂):

Taking duals, we have

D
f� ~f�f̂�

E
=

�
3l(�)+l(�)+l()

z�z�z
p�~p� p̂

�
M(e~eê; p~pp̂)T :

Thus we have

M(p~pp̂; f ~f f̂)(�;�;)(�;�;�) =
3l(�)+l(�)+l()

z�z�z
M(e~eê; p~pp̂)(�;�;�)(�;�;)

=
X

f2F
�;�;�

����

(�1)n�l(�)�l(�)�l(�)�2l
�(�)+l�(�)+l�()+2l�()

z�z�z
w(f):
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To �nd M(f ~f f̂ ; p~pp̂), we begin with

he�~e�ê�i = hp�~p� p̂iM(p~pp̂; e~eê):

Taking duals gives �
3l(�)+l(�)+l(�)

z�z�z�
p�~p�p̂�

�
M(p~pp̂; e~eê)T :

Thus,

M(f ~f f̂ ; p~pp̂)(�;�;�)(�;�;�) =
z�z�z�

3l(�)+l(�)+l(�)
M(p~pp̂; e~eê)(�;�;�)(�;�;�)

=
X

(�;�;)`j�j
(�; ;�)`j� j
(�;�;!)`j�j
�+�+�=�
�+ +�=�
+�+!=�

(�1)n�l(�)�l(�)�l()�l(�)�l( )�l(�)�l(�)�l(�)�l(!)�l( )+2l(�)+2l(�)+l(!)z�z�z�

3l(�)+l(�)+l(�)z�z�zz�z z�z�z�z!

�OB�+�+;�OB�+ +�;�OB�+�+!;�:



Chapter 5

The Permutation Enumeration of

C3xSn

In this chapter, we extend the ideas of Beck and Remmel's proofs regarding

the permuation enumeration of Sn and Bn to C3xSn. We use the combinatorics

and representation theory to de�ne an appropriate analog, �W (with W for wreath

product), of �, and to prove similar results for the image of this analog applied to

various bases of a certain space of symmetric functions. We conclude the chapter

by indicating how the proofs can be extended to arbitrary wreath products CkxSn.

It is important to note that in the case of C3xSn, we have much more choice

than in the Sn and Bn cases. In Bn, there is a natural ordering on the elements

that make up Bn elements which is natural when considering it as a Coxeter group.

Since C3xSn is not a Coxeter group, there is no longer a geometric interpretation

with which to determine an ordering on the letters that make up elements of C3xSn.

There are a lot of ways that we can de�ne these orderings, which in turn lead to

di�erent de�nitions of statistics on these elements, and to di�erent de�nitions of

the analog of �. For example, we can have elements with certain signs be ordered

in the reverse order, as are the barred elements in Bn. We can choose to give

this reverse ordering to none, one, or two of the signs. We choose here to use

the ordering where no sign has the reverse ordering because it gives results which

82
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are most easily generalizable. Note that in doing so, however, we sacri�ce some

information that we could otherwise have gained. The results obtained using a

di�erent ordering, that where one sign has the reverse ordering, including the

appropriate de�nitions of statistics, are stated without proof in Appendix A.

5.1 Preliminaries

We begin by giving some de�nitions that we will need in this chapter.

De�ne a partial ordering 
 on the letters 1; 2; : : : ; n; 1; 2; : : : ; n; 1; 2; : : : ; n by

1 <
 2 <
 � � � <
 n;

1 <
 2 <
 � � � <
 n;

1 <
 2 <
 � � � <
 n:

De�ne a second partial ordering � which equates those letters with the same un-

derlying letter.

1 � 1 � 1 <� 2 � 2 � 2 <� � � � <� n � n � n:

Recall that for an element � = �1�2 � � ��n 2 C3xSn, the sign of a letter of the

element is denoted by �(�i). The sign of the element itself is just the product of

the signs of the letters,
Q

n

i=1 �(�i).

Given all this, we de�ne a number of statistics on elements of C3xSn. De�ne

the number of C3xSn-descents of an element � to be

desW (�) = jfi : 1 � i � n� 1; �i >
 �i+1gj =

jfi : 1 � i � n� 1; �(�i) = �(�i+1); �i > �i+1gj:

For example, if � = 86274315, then desW (�) = jf1; 2; 4; 6gj = 4. Given a partition

� = (�1; �2; : : : ; �l) of n, we de�ne the number of �-descents, desW;�(�) in the

following way. Write � = �1�2 � � � �n in one-line notation and break it into pieces

of lengths �1; �2; : : : ; �l. Then count only the C3xSn-descents that occur with
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both i and i + 1 in the same piece. For example, if � = 86274315, we break �

into pieces [8][627][4315], and desW;�(�) = jf2; 6gj = 2. We de�ne the number of

C3xSn-inversions of � by

invW (�) = jf(i; j) : 1 � i < j � n; �i >� �jgj:

For example, if � = 86274315, then invW (�) = 7+ 5+1+ 4+2+ 1+0 = 20. The

number of C3xSn-descedances of the element � is de�ned on the cycles of �. Write

� in cycle notation as

� = (�11; �12; : : : ; �1l1 )(�21; �22; : : : ; �2l2) � � � (�k1; �k2 ; : : : ; �klk ):

Then the number of C3xSn-descedances of �, denoted deW (�), is given by

deW (�) =

kX
i=1

(jfj : 1 � j � li � 1; �(�ij) = �(�ij+1); �ij > �ij+1gj

+ �(�ili > �i1)�(�(�ili ) = �(�i1))):

For example, if � = (1; 8; 6; 5; 3)(2; 7; 4), then deW (�) = 3.

We now de�ne an analog of �.

De�nition 5.1. If �W3
is the space of symmetric functions de�ned in (3.3), the

homomorphism �W3
: �W �! Q[x] is de�ned on the elementary basis by

�W (en(X + Y + Z)) =
(1� x)n�1 + (1 � x)n�1 + (1� x)n�1

3nn!
;

�W (en(X + �Y + �2Z)) =
(1� x)n�1 + �(�� �x)n�1 + �2(�2 � �2x)n�1

3nn!
;

�W (en(X + �2Y + �Z)) =
(1� x)n�1 + �2(�2 � �2x)n�1 + �(�� �x)n�1

3nn!

for n 2 f1; 2; : : : g and by setting �W (e0(X + Y + Z)) = �W (e0(X + �Y + �2Z)) =

�W (e0(X + �2Y + �Z)) = 1.

Note that we do not write these expressions in the most concise manner possible.

This is because this manner of writing them suggests the combinatorial proofs that

will come later. We will now consider what the results are when �W is applied to

the homogeneous, power, and Schur bases of �W3
.
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5.2 �W Applied to the �W3;n
-Homogeneous Sym-

metric Functions

The transition matrices between h�(X+Y+Z)h�(X+�Y+�2Z)h�(X+�2Y +�Z)

and e�(X + Y +Z)e�(X + �Y + �2Z)e(X + �2Y + �Z) are just triples of matrices

from the Sn case. That is, we can express h�(X+Y +Z) in terms of e�(X+Y +Z),

h�(X + �Y + �2Z) in terms of e�(X + �Y + �2Z), and h�(X + �2Y + �Z) in terms

of e(X + �2Y + �Z). Because of this, we treat each of these cases separately.

5.2.1 �W Applied to hn(X + Y + Z)

If we apply �W to hn(X + Y + Z), we achieve the following result.

Theorem 5.2. Let �W be the homomorphism de�ned in De�nition 5.1. Then

3nn!�W (hn(X + Y + Z)) =
X

�2C3xSn

xdesW (�);

where desW (�) is the number of C3xSn-descents.

Proof. We begin with the following expression, which can be found in [7].

hn(X + Y + Z) =
X
�`n

(�1)n�l(�)B�;(n)e�(X + Y + Z):

We multiply by 3nn! and apply �W to get

3nn!�W (hn(X + Y + Z)) =
X
�`n

3nn!(�1)n�l(�)B�;(n)�W (e�(X + Y + Z))

=
X
�`n

3nn!(�1)n�l(�)B�;(n)

l(�)Y
i=1

(1� x)�i�1 + (1 � x)�i�1 + (1� x)�i�1

3�i�i!

=
X
�`n

X
T2B�;(n)

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�
:

We interpret this as a sum of signed, weighted objects o 2 O3hna. For a given

partition �, and a �-brick tabloid of shape (n), the multinomial coe�cient �lls
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13 8 2 10 7 5 1 12 9 6 11 4 3

x -1 1 -1 1 x 1 x -1 1 -1 x 1

Figure 5.1: An example of an object in O3hna.

each brick with a decreasing sequence of integers such that exactly the integers

1; 2; : : : ; n are used. Each brick is designated as regular, barred, or double barred.

Each cell c is given a weight according to the following rule.

w(c) =

8<
:
1; c is at the end of a brick,

�1 or x; otherwise.

This accounts for the (x � 1)�i�1 terms. De�ne the weight of an object o byQ
c2ow(c). Then we can write

X
�`n

X
T2B�;(n)

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

=
X

o2O3hna

w(o):

An example of such an object is given in Figure 5.1.

We now perform a sign-changing, weight-preserving involution on these objects.

Proceed from left to right through the tabloid until one of the following occurs,

then perform the appropriate operation.

� If there is a cell c with weight �1, split the brick after c and change the

weight of c from �1 to +1.

� If there is a decrease from the integer �lling of the last cell of one brick to

that of the �rst cell of the next brick, and the two bricks are of the same

type, join the two bricks together and change the weight of c from +1 to �1.
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13 8 2 10 7 5 1 12 9 6 11 4 3

x -1 1 -1 1 x 1 x -1 1 -1 x 1

l

13 8 2 10 7 5 1 12 9 6 11 4 3

x 1 1 -1 1 x 1 x -1 1 -1 x 1

Figure 5.2: An example of the involution on O3hna.

13 8 2 10 7 5 1 12 9 6 11 4 3

x x 1 x 1 x 1 x x 1 x x 1

Figure 5.3: An example of a �xed point of the involution on O3hna.

An example of the involution is given in Figure 5.2.

The �xed points of the involution are signed and weighted �-brick tabloids of

shape (n) �lled with integers which have the following properties:

� The integer �llings decrease within each brick, and increase between consec-

utive bricks of the same type.

� A cell is weighted by 1 if it occurs at the end of a brick, or by x otherwise.

An example of a �xed point of the involution is given in Figure 5.3.

Interpret the integer �llings of the brick, read left to right, as an element of

C3xSn, with elements in regular, barred, and double barred bricks corresponding

to regular, barred, and double barred elements, respectively. Then each C3xSn-

descent is weighted by x and all other transitions are weighted by 1, giving the
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result. �

5.2.2 �W Applied to hn(X + �Y + �2Z) and hn(X + �2Y + �Z)

When �W is applied to the bases hn(X + �Y + �2Z) and hn(X + �2Y + �Z), the

result is the following.

Theorem 5.3. Let �W be the homomorphism de�ned in De�nition 5.1. Then

3nn!�W (hn(X + �Y + �2Z)) =
X

�2C3xSn

�(�)xdesW (�) (5.1)

3nn!�W (hn(X + �2Y + �Z)) =
X

�2C3xSn

�(�)xdesW (�); (5.2)

where desW (�) is the number of CkxSn-descents of �.

Proof. We begin by outlining the proof of (5.1). Following the same steps as in

the proof of Theorem 5.2, we come to the identity

3nn!�W (hn(X + �Y + �2Z)) =

X
�`n

X
T2B�;(n)

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�
:

We interpret this as a sum of signed, weighted objects o 2 O3hnb. We again

have �-brick tabloids of shape (n) �lled with the integers 1; 2; : : : ; n such that the

integers decrease within each brick, and each brick is designated as regular, barred,

or double barred. The di�erence comes with the weight on each cell. Here, the

weight on a cell c depends on what kind of brick it lies in. The weights are given

by the following.

� If c is in a regular brick,

w(c) =

8<
:
1; c is at the end of a brick,

�1 or x; otherwise.

This accounts for the (x� 1)�i�1 terms.
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13 8 2 10 7 5 1 12 9 6 11 4 3

x -1 1 ��2 �2 x 1 �x �� � �� �x �

Figure 5.4: An example of an object in O3hnb.

� If c is in a barred brick,

w(c) =

8<
:�; c is at the end of a brick,

�� or �x; otherwise.

This accounts for the �(�x� �)�i�1 terms.

� If c is in a double barred brick,

w(c) =

8<
:�

2; c is at the end of a brick,

��2 or �2x; otherwise.

This accounts for the �2(�2x� �2)�i�1 terms.

De�ne the weight of an object o by w(o) =
Q

c2ow(c). Then we can write

X
�`n

X
T2B�;(n)

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

=
X

o2O3hnb

w(o):

An example of these objects is given in Figure 5.4.

We perform a similar involution to that in the proof of Theorem 5.2. Traverse

the tabloid from left to right. At the �rst occurrence of one of the following,

perform the corresponding operation.

� If a cell c has weight �1, ��, or ��2, split the brick after c and change the

weight of c from �1, ��, or ��2 to +1, +�, or +�2.
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� If there is a decrease between the integer �lling of the last cell of a brick and

that of the �rst cell of the next brick and both bricks are of the same type,

join the two bricks and change the weight of c from +1, +�, or +�2 to �1,

��, of ��2.

The �xed points then are �-brick tabloids of shape (n), �lled with the integers

1; 2; : : : ; n such that the integer �llings decrease within bricks and increase between

consecutive bricks of the same type. Each brick is designated as regular, barred,

or double barred. The weights on the cells are as follows. In a regular brick, the

cell at the end has weight 1 while the others have weight x. In a barred brick, the

cell at the end has weight � while the others have weight �x. In a double barred

brick, the cell at the end has weight �2 while the other cells have weight �2x. If we

again consider the �lling of an object as an element of C3xSn, the x weights appear

precisely in the cells with C3xSn-descents. Each cell in a barred brick contributes

� and each cell in a double barred brick contributes �2. This contribution of signs

corresponds to the sign of the element, �(�). Thus we have the result.

The proof of (5.2) is nearly the same. The only di�erence is in the weights

placed on each cell in our interpretation of the sum. The weight on a cell is given

by the following.

� If c is in a regular brick,

w(c) =

8<
:
1; c is at the end of a brick,

�1 or x; otherwise.

� If c is in a barred brick,

w(c) =

8<
:
�;2 c is at the end of a brick,

��2 or �2x; otherwise.

� If c is in a double barred brick,

w(c) =

8<
:
�; c is at the end of a brick,

�� or �x; otherwise.
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In this case, the �xed points are the same, except that barred cells contribute �2

and double barred cells contribute �. This gives the complex conjugate of the sign

of the underlying element of C3xSn. �

5.2.3 �W Applied to h�(X + Y + Z), h�(X + �Y + �2Z), and

h�(X + �2Y + �Z)

If we apply �W to the h�'s rather than just the hn's, we obtain generating

functions for the statistic desW;�(�) on elements of C3xSn. The speci�c results

follow.

Theorem 5.4. Let �W be the homomorphism de�ned in De�nition 5.1. If � is a

partition of n, then

3nn!�W (h�(X + Y + Z)) =
X

�2C3xSn

xdesW;�(�); (5.3)

3nn!�W (h�(X + �Y + �2Z)) =
X

�2C3xSn

�(�)xdesW;�(�); (5.4)

3nn!�W (h�(X + �2Y + �Z)) =
X

�2C3xSn

�(�)xdesW;�(�); (5.5)

where desW;�(�) is the number of C3xSn �-descents of �.

Proof. We begin by outlining the proof of (5.3). The proofs of (5.4) and (5.5) are

very similar. The only di�erences are the same as the di�erences between the proof

of Theorem 5.2 and the proofs of (5.1) and (5.2).

By the same steps as before we obtain the expression

3nn!�W (h�(X + Y + Z)) =

X
�`n

X
T2B�;�

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�
:
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3 16 13 9 8 5 4

12 11 1 10 6

15 2 14 7

1 x x -1 1 x 1

-1 x 1 -1 1

x 1 -1 1

Figure 5.5: An example of an object in O3h�.

We again interpret this expression as a sum of signed, weighted objects o 2

O3h�. Now we have �-brick tabloids of shape �, rather than one-row shapes. Each

brick is again designated as regular, barred, or double barred. The multinomial

coe�cient �lls each cell with the integers 1; 2; : : : ; n such that the numbers decrease

within each brick. Each cell is given the same weight as in the proof of Theorem

5.2: 1 if it is at the end of a brick and either �1 or x otherwise. The weight of an

object o is de�ned by w(o) =
Q

c2o w(c). Then we can write

X
�`n

X
T2B�;�

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

=
X

o2O3h�

w(o):

An example of these objects is given in Figure 5.5.

We perform a sign-changing, weight-preserving involution on these objects.

Traverse each row from left to right, considering the rows from top to bottom.

At the �rst occurrence of one of the following conditions, perform the appropriate

operation.

� If a cell c has weight �1, split the brick after c and change the weight of c

from �1 to +1.
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� If there is a decrease from the integer �lling of the last cell c in a brick to

that of the �rst cell of the next brick and both bricks are of the same type

and lie in the same row, join the bricks together and change the weight of c

from �1 to +1.

The �xed points of the involution are �-brick tabloids of shape � �lled with the

numbers 1; 2; : : : ; n, such that the following properties hold.

� The integers decrease within each brick.

� The integers increase between consecutive bricks of the same type within a

row.

� The last cell in each brick is weighted by 1. All other cells are weighted by

x.

Consider the integer �llings, read left to right in rows and reading rows from top to

bottom, to be an element of C3xSn. The cells that correspond to C3xSn-descents

within each row are counted by an x, but we have no idea what happens between

rows. This is the same as counting the statistic desW;�(�), which counts descents

within pieces of sizes �1; �2; : : : ; �l(�), but says nothing about descents that might

occur between the pieces. This proves (5.3). (5.4) and (5.5) follow by similar

arguments. �

5.2.4 q-analogs for the Homogeneous Basis

Here we de�ne a q-analog of �W and determine its image on the homogeneous

basis of �W3
.

De�nition 5.5. De�ne the homomorphism �W : �W3
�! (Q[q])[x] on the ele-
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mentary basis by

�W (en(X + Y + Z)) =
q(

n

2) ((1� x)n�1 + (1� x)n�1 + (1 � x)n�1)

3n[n]!
;

�W (en(X + �Y + �2Z)) =
q(

n

2) ((1� x)n�1 + �(�� �x)n�1 + �2(�2 � �2x)n�1)

3n[n]!
;

�W (en(X + �2Y + �Z)) =
q(

n

2
) ((1� x)n�1 + �2(�2 � �2x)n�1 + �(�� �x)n�1)

3n[n]!

for n 2 f1; 2; : : : g and by setting �
W
(e0(X + Y + Z)) = �

W
(e0(X + �Y + �2Z)) =

�
W
(e0(X + �2Y + �Z)) = 1.

Given this de�nition, if we apply �W to hn(X + Y + Z), we get the following

result.

Theorem 5.6. Let �
W

be the homomorphism de�ned in De�nition 5.5. Then

3n[n]!�W (hn(X + Y + Z)) =
X

�2C3xSn

xdesW (�)qinvW (�); (5.6)

3n[n]!�W (hn(X + �Y + �2Z)) =
X

�2C3xSn

�(�)xdesW (�)qinvW (�); (5.7)

3n[n]!�W (hn(X + �2Y + �Z)) =
X

�2C3xSn

�(�)xdesW (�)qinvW (�); (5.8)

where desW (�) is the number of C3xSn-descents, and invW (�) is the number of

C3xSn-inversions of �.

Proof. We will prove (5.6). The proofs of (5.7) and (5.8) are combinations of this

proof with the proofs of (5.1) and (5.2).

We begin with the transition matrix from the Sn case

hn =
X
�`n

(�1)n�l(�)B�;(n)en:
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Apply �W and multiply by 3n[n]! to get

3n[n]!�W (hn(X + Y + Z)) =
X
�`n

3n[n]!(�1)n�l(�)B�;(n)�W (en(X + Y + Z))

=
X
�`n

3n[n]!(�1)n�l(�)B�;(n)

l(�)Y
i=1

q(
�i
2
) ((1 � x)�i�1 + (1� x)�i�1 + (1 � x)�i�1)

3�i [�i]!

=
X
�`n

X
T2B�;(n)

"
n

�1; : : : ; �l(�)

#
l(�)Y
i=1

q(
�i
2
) �(1 � x)�i�1 + (1� x)�i�1 + (1 � x)�i�1

�
:

We interpret this as a sum of signed, weighted objects o 2 O3hnq. The objects

are similar to those in O3hn. Again, we have �-brick tabloids of shape (n). Each

brick is designated as regular, barred, or double barred. The cells are �lled with the

integers 1; 2; : : : ; n in the following way. For a given tabloid, let B1; B2; : : : ; Bl be

the bricks that occur in order from left to right in the �-brick tabloid. Let bi = jBij

so b1; b2; : : : ; bl is a rearrangement of �1; �2; : : : ; �l. We associate bi i's with Bi

and consider rearrangements in R(1b1 ; 2b2; : : : ; lbl). For each rearrangement r 2

R(1b1 ; 2b2 ; : : : ; lbl), we create a permutation �(r) in the following way. Number,

from right to left, �rst the 1's, then the 2's, and so on. We then take the inverse

permutation ��1(�). An example of this process is given in Table 5.1. By the

way we constructed ��1(r), we have decreasing sequences of lengths b1; b2; : : : ; bl,

which then �t into the bricks B1; B2; : : : ; Bl. By Theorem 1.1,"
n

�1; : : : ; �l

#
=

X
r2R(1b1;2b2 ;::: ;lbl)

qinv(r):

By the construction of �(r), we have

inv(��1(r)) = inv(�(r)) = inv(r) +

�
b1

2

�
+

�
b2

2

�
+ � � �+

�
bl

2

�
:

We now have �-brick tabloids of shape (n) �lled with the integers 1; 2; : : : ; n

such that the integers decrease within each brick. We give each cell an x-weight

in the same way as the objects in O3hn. If a cell is at the end of a brick, it gets a

weight of 1. The other cells have weights of either �1 or x. Here, each cell is also
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Table 5.1: Constructing the permutation ��1(r).

r 1 3 2 1 3 3 1 2 1 3 3

�(r) 4 11 6 3 10 9 2 5 1 8 7

��1(r) 9 7 4 1 8 3 11 10 6 5 2

13 8 2 10 7 5 1 12 9 6 11 4 3

x -1 1 -1 1 x 1 x -1 1 -1 x 1

q12 q7 q1 q7 q5 q3 q0 q5 q3 q2 q2 q1 q0

Figure 5.6: An example of an object in O3hnq.

given a q-weight. If c is a cell �lled with the integer i, the q-weight is qp, where p

is the number of integers that appear to the right of c in the tabloid, and which

are smaller than i. As before, each brick is also designated as regular, barred, or

double barred. An example of these objects appears in Figure 5.6.

We perform the same involution as we performed on the objects of O3hn. Note

that the q-weight does not change when this involution is performed. Thus the

�xed points have the following characteristics.

� The integer �llings decrease within bricks, and increase between consecutive

bricks of the same type.

� The x-weight of each cell is 1 if the cell is at the end of a brick and x otherwise.

� The q-weight is qp where p is the number of cells to the right of the cell with

smaller integer �lling.

We again consider the �lling as an element of CkxSn. From the above characteristics

we see that the x-weight counts precisely the C3xSn-descents of the C3xSn-element

�lling the tabloid. Meanwhile, the q-weight counts the number of inversions of

that element.
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�

If we combine the proofs of Theorem 5.4 and Theorem 5.6, we obtain the

following corollary.

Corollary 5.7. Let �
W

be the homomorphism de�ned in De�nition 5.5. If � is a

partition of n, then

3n[n]!�
W
(h�(X + Y + Z)) =

X
�2C3xSn

xdesW;�(�)qinvW (�);

3n[n]!�
W
(h�(X + �Y + �2Z)) =

X
�2C3xSn

�(�)xdesW;�(�)qinvW (�);

and

3n[n]!�
W
(h�(X + �2Y + �Z)) =

X
�2C3xSn

�(�)xdesW;�(�)qinvW (�);

where desW;�(�) is the number of C3xSn �-inversions of � and qinvW (�) is the num-

ber of C3xSn-inversions of �.

5.3 �W3
-Power Symmetric Functions Under �W

Here we determine the image of the power basis, p�(X)p�(Y )p�(Z), under the

homomorphism �W , de�ned in De�nition 5.1, using the transition matrix developed

Chapter 4 and the combinatorial ideas from the previous section. We then deter-

mine the q-analog of the image of p�(X)p�(Y )p�(Z), using the homomorphism �
W
,

de�ned in De�nition 5.5.

5.3.1 �W Applied to p�(X)p�(Y )p�(Z)

Here, we will prove the following theorem regarding the image of

p�(X)p�(Y )p�(Z) under �W .
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Theorem 5.8. Let �w be the homomorphism de�ned in De�nition 5.1. If

(�; �; �) ` n, then

3nn!

z�z�z�
�W (p�(X)p�(Y )p�(Z)) =

X
�2C(�;�;�)

xdeW (�);

where C(�;�;�) is the conjugacy class of C3xSn indexed by (�; �; �), and deW (�) is

the number of C3xSn-descedances of �.

Proof. We begin with the expression (4.19) developed in the previous chapter.

3l(�)+l(�)+l(�)p�(x)p�(Y )p�(Z)

e�~e�ê
=

(�1)n
X

f2F
�;�;

�����

(�1)l(�)+l(�)+l()�2l
�(�)+l�(�)+l(�)+2l(�)w(f):

Multiplying by the size of the conjugacy class indexed by (�; �; �) and applying

�W gives

3nn!

z�z�z�
�W (p�(X)p�(Y )p�(Z)) =

X
(�;�;)`n

X
f2F

�;�;

�����

w(f)
3nn!

3l(�)+l(�)+l(�)z�z�z�

� (�1)n�l(�)�l(�)�l()�2l
�(�)+l�(�)+l(�)+2l(�)

�

l(�)Y
i=1

�
(1 � x)�i�1 + (1 � x)�i�1 + (1 � x)�i�1

3�i�i!

�

�

l(�)Y
i=1

�
(1 � x)�i�1 + �(�� �x)�i�1 + �2(�2 � �2x)�i�1

3�i�i!

�

�

l()Y
i=1

�
(1� x)i�1 + �2(�2 � �2x)i�1 + �(�� �x)i�1

3ii!

�
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=
X

(�;�;)`n

X
f2F

�;�;

�����

w(f)

3l(�)+l(�)+l(�)z�z�z�

� �2l
�(�)+l�(�)+l (�)+2l(�)

�
n

�1; : : : ; �l(�); �1; : : : ; �l(�); 1; : : : ; l()

�

�

l(�)Y
i=1

�
(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

�

l(�)Y
i=1

�
(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

�

l()Y
i=1

�
(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
:

We will adopt some new notation for the binomial coe�cient which will allow the

cancellation of w(f). For a given f 2 F�;�;
�����, let ��(1); : : : ; ��(j), � (1); : : : ; � (k),

�(1); : : : ; �(l), with j + k + l = l(�) + l(�) + l(�) denote the lengths of the �-, �-,

and -bricks appearing at the end of rows in f . Then we express the multinomial

coe�cient as�
n

�1; : : : ; �l(�); �1; : : : ; �l(�); 1; : : : ; l()

�
=

n(n� 1) � � � (n� l(�)� l(�)� l(�) + 1)

��(1) � � ���(j)� (1) � � �� (k)�(1) � � � �(l)

�
n � l(�) � l(�)� l(�)

~�(f) ~�(f)~(f)

�
;

where ~�(f) denotes �̂1; �̂2; : : : ; �̂l(�) with

�̂j =

8<
:�j � 1; the �j brick is at the end of a row in f;

�j; otherwise.

The notation for ~�(f) and ~(f) is similar. Using this notation, we have the fol-
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lowing.

3nn!

z�z�z�
�W (p�(X)p�(Y )p�(Z)) =

X
(�;�;)`n

X
f2F

�;�;

�����

w(f)

3l(�)+l(�)+l(�)z�z�z�

� �2l
�(�)+l�(�)+l (�)+2l(�)

�
n(n� 1) � � � (n� l(�)� l(�)� l(�) + 1)

��(1) � � ���(j)� (1) � � �� (k)�(1) � � � �(l)

�
n� l(�)� l(�)� l(�)

~�(f) ~�(f)~(f)

�

�

l(�)Y
i=1

�
(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

�

l(�)Y
i=1

�
(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

�

l()Y
i=1

�
(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�

We now may cancel w(f), the product of the sizes of the bricks appearing at the

end of a row in f .

3nn!

z�z�z�
�W (p�(X)p�(Y )p�(Z))

=
X

(�;�;)`n

X
f2F

�;�;

�����

n(n� 1) � � � (n� l(�)� l(�)� l(�) + 1)

3l(�)+l(�)+l(�)z�z�z�

� �2l
�(�)+l�(�)+l(�)+2l(�)

�
n� l(�)� l(�)� l(�)

~�(f) ~�(f)~(f)

�

�

l(�)Y
i=1

�
(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

�

l(�)Y
i=1

�
(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

�

l()Y
i=1

�
(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
: (5.9)

We interpret the above expression as a sum of signed, weighted objects o 2 O3p.

For some (�; �; ) ` n, we have an element of F�;�;
�����. Designate each brick as
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5 3 2 4 1 5 3 2 4 1�!

*

5 3 2 1 4 5 3 2 4 1�!

*

5 3 1 4 2 5 3 2 4 1�!

*

5 2 1 4 3 5 3 2 4 1�!

*

3 2 1 4 5 5 3 2 4 1�!

*

Figure 5.7: A row of length 5 has 5 possible origins.

regular, barred, or double barred. Fill the object with the integers 1; 2; : : : ; n in

the following way. The term n(n�1) � � � (n� l(�)� l(�)+ l(�)+1) �lls the last cell

of the last brick of each row. The multinomial coe�cient
�
n�l(�)�l(�)�l(�)

~�(f) ~�(f)~(f)

�
�lls all of

the remaining cells with the integers not yet used in such a way that the numbers

decrease within each brick, with the possible exception of the last cell in the row.

To rectify this, for each row, we �nd the smallest integer, si, appearing in that row

and move it to the last cell in the row. We move the number that was originally in

the last cell, ai, to the brick previously occupied by si and rearrange the numbers in

that brick so they are decreasing. Place a star over the cell now occupied by ai. For

a row of length l, there are l ways to obtain a given �lling. For a simple example

of this, see Figure 5.7. We would like to ignore the marked cells and consider

only the �llings where the smallest number is at the end of each row, so we must

divide by the length of each row. If � = (1a12a2 � � �nan), � = (1b12b2 � � �nbn), and

 = (1c12c2 � � �ncn), we must divide by 1a1+b1+c12a2+b2+c2 � � �nan+bn+cn . Further, we

would like to ignore the order of the rows within each of �, �, and �, so we divide

by a1! � � � an!b1! � � � bn!c1 � � � cn!. Thus we have divided by z�z�z�.
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Table 5.2: Weights of cells in the objects.

regular cells barred cells double barred cells

end of: row brick none row brick none row brick none

� 1 1 -1, x 1 1 -1, x 1 1 -1, x

� � 1 1 -1, x � � ��, �x �2 �2 ��, �2x

 1 1 -1, x �2 �2 ��2, �2x � � ��, �x

� 1 1 -1, x 1 1 -1, x 1 1 -1, x
� � �2 1 -1, x 1 � ��, �x � �2 ��, �2x

 � 1 -1, x 1 �2 ��2, �2x �2 � ��, �x

� 1 1 -1, x 1 1 -1, x 1 1 -1, x
� � � 1 -1, x �2 � ��, �x 1 �2 ��2, �2x

 �2 1 -1, x � �2 ��2, �2x 1 � ��, �x

The weights placed on each cell depend on both whether the cell is in an �-,

�-, or -brick, and on whether it is in a regular, barred, or double barred brick.

They are de�ned as follows. A summary is given in Table 5.2, and an example of

the objects is given in Figure 5.8.

(�) If the cell c is in an �-brick, the weight is given by

w(c) =

8<
:1; c is at the end of a brick,

�1 or x; otherwise.

This holds no matter what type of brick c is in and accounts for the (x � 1)�i�1

terms.

(�) If c lies in a �-brick, the weight is given by the following.

� If c is in a regular brick,

w(c) =

8>>>>>>><
>>>>>>>:

�2; c is at the end of the last brick in a row of �;

�; c is at the end of the last brick in a row of �;

1; c is at the end of a brick but not a row,

�1 or x; otherwise.

This accounts for the �2l
�(�), �l

�(�), and (x� 1)�i�1 terms.
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�1 1 �

x 1

19 12 3

6 5

�x � �� �2

�1 x 1

�

20 4 11 1

17 10 9

15

�x �� �

� �2x �2

x 1

21 16 7

18 14 2

13 8
�-brick

�-brick

-brick

Figure 5.8: An example of an object in O3p.
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� If c is in a barred brick,

w(c) =

8>>>>>>><
>>>>>>>:

1; c is at the end of the last brick in a row of �;

�2; c is at the end of the last brick in a row of �;

�; c is at the end of a brick but not a row,

�� or �x; otherwise.

This accounts for the �2l
�(�), �l

�(�), and �(�x� �)�i�1 terms.

� If c is in a double barred brick,

w(c) =

8>>>>>>><
>>>>>>>:

�; c is at the end of the last brick in a row of �;

1; c is at the end of the last brick in a row of �;

�2; c is at the end of a brick but not a row,

��2 or �2x; otherwise.

This accounts for the �2l
�(�), �l

�(�), and �2(�2x� �2)�i�1 terms.

() If c lies in a -brick, the weight is given by the following.

� If c is in a regular brick,

w(c) =

8>>>>>>><
>>>>>>>:

�; c is at the end of the last brick in a row of �;

�2; c is at the end of the last brick in a row of �;

1; c is at the end of a brick but not a row,

�1 or x; otherwise.

This accounts for the �l
(�), �2l

(�), and (x� 1)i�1 terms.

� If c is in a barred brick,

w(c) =

8>>>>>>><
>>>>>>>:

1; c is at the end of the last brick in a row of �;

�; c is at the end of the last brick in a row of �;

�2; c is at the end of a brick but not a row,

��2 or �2x; otherwise.
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This accounts for the �l
(�), �2l

(�), and �2(�2x� �2)i�1 terms.

� If c is in a double barred brick,

w(c) =

8>>>>>>><
>>>>>>>:

�2; c is at the end of the last brick in a row of �;

1; c is at the end of the last brick in a row of �;

�; c is at the end of a brick but not a row,

�� or �x; otherwise.

This accounts for the �l
(�), �2l

(�), and �(�x� �)i�1 terms.

De�ne the weight of an object o by w(o) =
Q

c2o w(c). Then we can write the

expression in (5.9) as
P

o2O3p
w(o).

We will now perform an involution on the objects. Proceed by traversing, one

at a time, the rows of the diagram, considering the rows from top to bottom, until

we �nd one of the following conditions, then perform the appropriate operation.

� If there is a cell c with weight �1, ��, or ��2, divide the brick after c, and

change the weight of c from �1, ��, or ��2 to +1, +�, or +�2.

� If there is a decrease from the integer �lling of the last cell of one brick to

that of the �rst cell of the next, and both bricks are of the same type and in

the same row, join together to two bricks and change the weight of c from

+1, +�, or +�2 to �1, ��, or ��2.

An example of the involution is given in Figure 5.9.

The �xed points of the involution are elements of F�;�;
����� �lled with the integers

1; 2; : : : ; n with the smallest number in each row appearing at the end. The integer

�llings decrease within bricks, and increase between consecutive bricks of the same

type in the same row. Each brick is designated as regular, barred, or double barred.

The cells are weighted in the following way, and depend on the type of row and

the type of brick they lie in. The weights are also summarized in Table 5.3, and

an example of a �xed point is given in Figure 5.10.
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�x �� �

1 x 1

x 1

21 16 7

18 14 2

13 8

�x �� �

1 x 1

x 1

21 16 7

18 14 2

13 8

 !

. . .
. . .

Figure 5.9: An example of the involution on O3p.

Table 5.3: Weights of cells in �xed points of the involution.

regular cells barred cells double barred cells
end of: row brick none row brick none row brick none

� 1 1 x 1 1 x 1 1 x
� � 1 1 x � � �x �2 �2 �2x

 1 1 x �2 �2 �2x � � �x

� 1 1 x 1 1 x 1 1 x

� � �2 1 x 1 � �x � �2 �2x

 � 1 x 1 �2 �2x �2 � �x

� 1 1 x 1 1 x 1 1 x

� � � 1 x �2 � �x 1 �2 �2x
 �2 1 x � �2 �2x 1 � �x
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x 1 �

x 1

19 12 3

6 5

�x � �x �2

x x 1

�

20 4 11 1

17 10 9

15

�x �x �

� �2x �2

x 1

21 16 7

18 14 2

13 8

Figure 5.10: An example of a �xed point of the involution on O3p.
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(�) If the cell c is in an �-brick, its weight is given by

w(c) =

8<
:
1; c is at the end of a brick,

x; otherwise.

(�) If the cell is in a �-brick, its weight is given by the following.

� If c is in a regular brick, its weight is given by

w(c) =

8>>>>>>><
>>>>>>>:

�2; c is at the end of the last brick in a row of �;

�; c is at the end of the last brick in a row of �;

1; c is at the end of a brick but not a row,

x; otherwise.

� If c is in a barred brick, its weight is given by

w(c) =

8>>>>>>><
>>>>>>>:

1; c is at the end of the last brick in a row of �;

�2; c is at the end of the last brick in a row of �;

�; c is at the end of a brick but not a row,

�x; otherwise.

� If c is in a double barred brick, its weight is given by

w(c) =

8>>>>>>><
>>>>>>>:

�; c is at the end of the last brick in a row of �;

1; c is at the end of the last brick in a row of �;

�2; c is at the end of a brick but not a row,

�2x; otherwise.

() If the cell is in a -brick, its weight is given by the following.



109

� If c is in a regular brick, its weight is given by

w(c) =

8>>>>>>><
>>>>>>>:

�; c is at the end of the last brick in a row of �;

�2; c is at the end of the last brick in a row of �;

1; c is at the end of a brick but not a row,

x; otherwise.

� If c is in a barred brick, its weight is given by

w(c) =

8>>>>>>><
>>>>>>>:

1; c is at the end of the last brick in a row of �;

�; c is at the end of the last brick in a row of �;

�2; c is at the end of a brick but not a row,

�2x; otherwise.

� If c is in a double barred brick, its weight is given by

w(c) =

8>>>>>>><
>>>>>>>:

�2; c is at the end of the last brick in a row of �;

1; c is at the end of the last brick in a row of �;

�; c is at the end of a brick but not a row,

�x; otherwise.

De�ne a trivolution to be a map from a set to itself, f : S ! S, with the

property that for all s 2 S, f(f(f(s))) = s. We perform the following trivolution

on the remaining objects. Change each �-row to a �-row, change each �-row to

a -row, and change each -row to an �-row, maintaining the type of each brick,

but with the appropriate changes of weights on each cell. An example is given in

Figures 5.11, 5.12, and 5.13.

By considering the weights in Table 5.3, we can see what happens to the weight

of any given row throughout the trivolution. This depends, however, on whether

the row lies in �, �, or �. For this analysis, say that in all cases we begin with an
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�x �x �

x 1

x 1

14 5 4

10 2

17 11

. . .

x x 1

x 1

�x �

14 5 4

10 2

17 11

. . .

�2x �2x �2

x 1

�2x �2

14 5 4

10 2

17 11

. . .

�! �!

" !
6

Figure 5.11: An example of the trivolution in �.

�x �x 1

1 1

13 6 3

15 9

. . .

. . .

�2x �2x 1

1 �

13 6 3

15 9

. . .

. . .

x x 1

1 �2

13 6 3

15 9

. . .

. . .

�! �!

" !
6

Figure 5.12: An example of the trivolution in �.
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1 �x �2

x �2

1

12 11 8

16 1

7

. . .

1 �2x �

x 1

1

12 11 8

16 1

7

. . .

1 x 1

x �

1

12 11 8

16 1

7

. . .

�! �!

" !
6

Figure 5.13: An example of the trivolution in �.

�-row of weight w. Let b be the number of barred cells in the row, and let d be the

number of double barred cells. We determine what changes occur in this weight,

depending on where the row lies. We use this to determine the �xed points of the

trivolution, an example of which appears in Figure 5.14.

(�) If the row lies in �, The �rst application of the trivolution changes the sign

on each barred cell by � and on each double barred cell by �2. When the involution

is applied again, the weights on the barred cells are now �2 times their original

weights, and the double barred cells are � times their original weights. Thus the

weights of the row as �-, �-, and -rows are w, �b+2dw, and �2b+dq, respectively.

Summing over the objects, we have w + �b+2dw + �2b+dw. If b + 2d � 0 (mod 3),

then this sum is 3. Otherwise, the sum is 0. Thus we are only left with those rows

that have b+ 2d � 0 (mod 3). In this case, we might as well consider each row as

an �-row, so we divide by 3l(�) to disregard the �-, �-, and -rows.

(�) If the row lies in �, the �rst application of the trivolution changes the sign

on each barred cell by � and on each double barred cell by �2, with the exception

of the cell at the end of the row. If the cell at the end of the row is a regular cell,

its sign is �2 times the original weight; if it is a barred cell, its sign doesn't change;
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1 x 1

x 1

1

12 11 8

16 1

7

x 1 1

1 1

13 6 3

15 9

x x 1

x 1

x 1

14 5 4

10 2

17 11

Figure 5.14: An example of a �xed point of the trivolution on O3p.



113

if it is double barred, it only increases by �. When the trivolution is applied again,

the weights on the barred cells are now �2 times their original weights, and the

double barred cells are � times their original weights, again with the exception of

the last cell. If the last cell is regular, its weight is now � times its original weight;

if it is barred, the weight again remains the same; if it is double barred, the

weight is �2 times its original weight. Thus the weights of the row as �-, �-, and

-rows are w, �b+2d+2�(end cell reg)��(end cell barred)��(end cell double)w = �b+2d+2w, and

�2b+d+�(end cell reg)�2�(end cell barred)+�(end cell double)w = �2b+d+1w, respectively, where

�(statement) is 1 if the statement is true and 0 if it is false. Summing over the

objects, we have w + �b+2d+2w + �2b+d+1w. If b + 2d � 1 (mod 3), then this sum

is 3. Otherwise, the sum is 0. Thus we are only left with those rows that have

b+2d � 1 (mod 3). In this case, we might as well consider each row as an �-row,

so we divide by 3l(�) to disregard the �-, �-, and -rows.

(�) If the row lies in �, the �rst application of the trivolution changes the sign

on each barred cell by � and on each double barred cell by �2, with the exception of

the cell at the end of the row. If the cell at the end of the row is a regular cell, its

sign is � times the original weight; if it is a barred cell, its sign is �2 times its original

weight; if it is double barred, its weight doesn't change. When the trivolution is ap-

plied again, the weights on the barred cells are now �2 times their original weights,

and the double barred cells are � times their original weights, again with the excep-

tion of the last cell. If the last cell is regular, its weight is now �2 times its original

weight; if it is barred, the weight is � times its original weight; if it is double barred,

the weight again does not change. Thus the weights of the row as �-, �-, and

-rows are w, �b+2d+�(end cell reg)+�(end cell barred)�2�(end cell double)w = �b+2d+1w, and

�2b+d+2�(end cell reg)��(end cell barred)��(end cell double)w = �2b+d+2w, respectively. Sum-

ming over the objects, we have w + �b+2d+1w + �2b+d+2w. If b + 2d � 2 (mod 3),

then this sum is 3. Otherwise, the sum is 0. Thus we are only left with those rows

that have b+ 2d � 2 (mod 3). In this case, we might as well consider each row as

an �-row, so we divide by 3l(�) to disregard the �-, �-, and -rows.

We now interpret each row of a �xed point as a cycle in an element of C3xSn,
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x x 1 x 1 x x x 1 x 1

40 18 8 22 6 35 12 11 5 10 2

(40; 18; 8; 22; 6; 35; 12; 11; 5; 10; 2)�!

Figure 5.15: An example of the interpretation of a row as a cycle.

with k and k corresponding to �k and �2k, respectively. See Figure 5.15 as an exam-

ple. Within each cycle, decreases between letters of the same type are weighted by

x, while all decreases between letters of di�erent types and increases are weighted

by 1. This corresponds to the de�nition of C3xSn-descedances. Note that in �, we

have cycles with b+2d � 0 (mod 3), so the sign of the cycle is �b+2d = 1. In �, we

have cycles with b + 2d � 1 (mod 3), so the cycles have sign �. In �, b + 2d � 2

(mod 3), so the cycles have sign �2. Thus the element of C3xSn corresponding to

each object remaining after the involution and trivolution belongs to the conjugacy

class indexed by (�; �; �), and its weight is xdeW (�). �

5.3.2 q-analogs for the Power Bases

Our ultimate goal here is to determine the image of 3n[n]!p�(X)p�(Y )p�(Z)

under the homomorphism �
W
, given in De�nition 5.5. To do this, we will �rst

determine the images of 3k[k]!pk(X), 3k[k]!pk(Y ), and 3k[k]!pk(Z). We then obtain

the desired result as a corollary.

We begin by proving the following theorem.

Theorem 5.9. Let �
W

be the homomorphism de�ned in De�nition 5.5. Then

3k[k]!�
W
(pk(X)) =

X
�2C3xS

(1)

k

xdesW (�)+1�t(�)qinvW (�)(xt(�) � (x� 1)t(�));

where C3xS
(1)
k

is the set f� 2 C3xSn : �(�) = 1g, and t(�) is the length of the

co�nal strictly decreasing sequence of integers of the same type of elements in the
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one-line notation of �.

Proof. We begin with the following expression, a specialization of (4.19).

3pk(X)p;(Y )p;(Z) =
X

(�;�;)`k

X
f2F

�;�;

(k)�;�;

(�1)k�l(�)�l(�)�l()w(f)

� e�(X + Y + Z)e�(X + �Y + �2Z)e(X + �2Y + �Z):

We multiply this by 3k[k]! and apply �
W

to get the following.

3k+1[k]!�
W
(pk(X)) =

X
(�;�;)`k

X
f2F

�;�;

(k)�;�;

(�1)k�l(�)�l(�)�l()3k[k]!w(f)

�

l(�)Y
i=1

 
q(

�i
2
) ((1� x)�i�1 + (1� x)�i�1 + (1� x)�i�1)

3�i [�i]!

!

�

l(�)Y
i=1

 
q(

�i
2
) �(1 � x)�i�1 + �(�� �x)�i�1 + �2(�2 � �2x)�i�1

�
3�i [�i]!

!

�

l()Y
i=1

 
q(

i
2
) ((1 � x)i�1 + �2(�2 � �2x)i�1 + �(�� �x)i�1)

3i [i]!

!
:

=
X

(�;�;)`k

X
f2F

�;�;

(k)�;�;

w(f)

"
k

�1; : : : ; �l(�); �1; : : : ; �l(�); 1; : : : ; l()

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

�

l()Y
i=1

q(
i
2
) �(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
:

We interpret this as a sum of signed, weighted objects o 2 O3pqx. These objects

are clearly of shape (k) � ; � ;, �lled with bricks such that the single row in � is
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�lled with all �-, �-, or -bricks. We consider these separately, and divide the

above sum over objects in F
�;�;

(k)�;�;
into three sums over B�;(k), B�;(k), and B;(k).

=
X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

+
X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�
(5.10)

+
X
`k

X
f2B;(k)

w(f)

"
k

1; : : : ; l()

#

�

l()Y
i=1

q(
i
2
) �(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
:

We consider the three cases separately.

First, assume that the bricks in the single row are �-bricks. We will prove the

following lemma.

Lemma 5.10.

X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�
=

X
�2C3xSk

xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
;

where t(�) is the length of the co�nal strictly decreasing sequence of elements of

the same type in the one-line notation of �.
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Proof. We have an �-brick tabloid of shape (k). Designate each brick as regu-

lar, barred, or double barred. Fill it with the integers 1; 2; : : : ; n in the following

way. For a given tabloid, let B1; B2; : : : ; Bl be the bricks that occur in order from

left to right in the �-brick tabloid. Let bi = jBij so b1; b2; : : : ; bl is a rearrange-

ment of �1; �2; : : : ; �l. We associate bi i's with Bi and consider rearrangements

in R(1b1 ; 2b2 ; : : : ; lbl). For each rearrangement r 2 R(1b1 ; 2b2 ; : : : ; lbl), we create

a permutation �(r) in the following way. Number, from right to left, �rst the

1's, then the 2's, and so on. We then take the inverse permutation ��1(�). An

example of this process is given in Table 5.1. By the way we constructed ��1(r),

we have decreasing sequences of lengths b1; b2; : : : ; bl, which then �t into the bricks

B1; B2; : : : ; Bl. By Theorem 1.1,"
n

�1; : : : ; �l

#
=

X
r2R(1b1;2b2;::: ;lbl)

qinv(r):

By the construction of �(r), we have

inv(��1(r)) = inv(�(r)) = inv(r) +

�
b1

2

�
+

�
b2

2

�
+ � � �+

�
bl

2

�
:

We now have an �-brick tabloid of shape (k), �lled with integers such that they

decrease within the bricks. We associate to each cell c a q-weight, wq(c) = qp(c),

where p(c) is the number of cells to the right of c �lled with a smaller number. By

the above argument, these will count the C3xSn-inversions of the �lling. As the

involution we will perform does not change the q-weight, we will ignore it for now.

We also associate to each cell an x-weight. This is given by

wx(c) =

8<
:
1; c is at the end of a brick,

�1 or x; otherwise.

The last brick in the row is also weighted by its length. The weight of an object o

is then de�ned as

w(o) =

 Y
c2o

wx(c)wq(c)

! Y
b2o

jbj�(b is at the end of a row)

!
:
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We can then write

X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�
=

X
o2O3pqx

w(o):

We now perform the following involution on the objects. Note that changing

the size of the last brick in the row will change the weight of the object, since the

last brick is weighted by its size. Thus in the following involution, we do not change

anything about the last brick. Proceed left to right through the tabloid until the

�rst occurrence of one of the following and perform the appropriate operation,

unless the �rst occurrence occurs in the last brick.

� If there is a cell c with weight �1, divide the brick after c and change the

weight of c from �1 to +1.

� If there is a decrease between the integer �lling of the last cell c of one brick

and that of the �rst cell of the next and both bricks are of the same type,

join the two bricks together and change the weight of c from +1 to �1.

The �xed points of the involution are �-brick tabloids of shape (k), �lled with

the integers 1; 2; : : : ; n. In addition, each cell is designated as regular, barred, or

double barred. The �xed points have the following properties.

� The integer �llings decrease within bricks.

� The integer �llings increase between consecutive bricks of the same type, with

the possible exception of a decrease between the second to the last brick and

the last brick.

� The last brick has weight 1 in the last cell, and either x or �1 in the other

cells. In addition, it is weighted by its length.
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11 8 4 10 7 6 1 12 9 5 3 2

x x 1 x 1 x 1 x 1 x �1 1

Figure 5.16: An example of a �xed point of the involution on O3pqx.

t(�)

j

20 18 15 14 10 7 5 4 2

x x x 1 x �1 �1 x 1

Figure 5.17: An example of t(�) and j.

� The other bricks have weight 1 in the last cell, and x in the other cells.

� Each cell has a q-weight as described above.

An example of a �xed point is given in Figure 5.16.

Let t(�) be the length of the co�nal strictly decreasing sequence of integers in

bricks of the same type. Note that this might correspond to either just the last

brick, or the last two bricks. Let j be the length of the last brick. See Figure 5.17

for an example of what this might look like. We want to count all of the descents

of the object. We pull these out, which means we must divide each of the weights,

except for the weight of the last cell, by x. These adjusted weights are shown in

Figure 5.18.

We can now rewrite the sum for the �-brick case as

X
�2C3xSk

xdesW (�)qinvW (�)

0
@1

x

t(�)�1X
j=1

�
(1 �

1

x
)j�1j

�
+ t(�)(1�

1

x
)t(�)�1

1
A

by splitting the possibilities into the case in which the second to last brick is part
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t(�)

j

20 18 15 14 10 7 5 4 2

1 1 1
1
x

1 �
1
x
�

1
x

1 1

Figure 5.18: An example of the adjusted weights.

of the co�nal decreasing sequence, and the case when it is not. In both cases, we

have pulled out the terms xdesW (�)qinvW (�), so we need only determine the adjusted

weights. The �rst sum is over all possible lengths of the last brick, assuming that

the second to last brick is part of the co�nal decreasing sequence. The 1
x
comes

from the last cell of the second to last brick. Within the sum, the j is from the

weight of the last brick, and the term (1 � 1
x
)j�1 gives all the possible weights

of the other cells of the last brick. The last term corresponds to the case where

the co�nal decreasing sequence occurs only within the last brick. In this case, the

weight of the last brick is j = t(�). The last cell of the brick must have weight

1, but the term (1 � 1
x
)t(�)�1 counts all of the possible weights of the other cells

in the brick. We can then rewrite this expression in the following ways to get the
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desired formula.

=
X

�2C3xSk

xdesW (�)qinvW (�)

0
@x t(�)�1X

j=1

�
(1�

1

x
)j�1

j

x2

�
+ t(�)(1�

1

x
)t(�)�1

1
A

=
X

�2C3xSk

xdesW (�)qinvW (�)

0
@x d

dx

0
@t(�)�1X

j=1

(1 �
1

x
)j

1
A+ t(�)(1�

1

x
)t(�)�1

1
A

=
X

�2C3xSk

xdesW (�)qinvW (�)

 
x
d

dx

 
(1 � 1

x
)t(�) � 1

(1 � 1
x
)� 1

!
+ t(�)(1�

1

x
)t(�)�1

!

=
X

�2C3xSk

xdesW (�)qinvW (�)

�
x
d

dx
x

�
1� (1�

1

x
)t(�)

�
+ t(�)(1�

1

x
)t(�)�1

�

=
X

�2C3xSk

xdesW (�)qinvW (�)

�
x� x(1�

1

x
)t(�)

�

=
X

�2C3xSk

xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
:

This proves the lemma for the case that the tabloid is �lled with �-bricks. �

We now consider the case where the tabloid is �lled with �-bricks, and prove

the following lemma.

Lemma 5.11.

X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�
=

X
�2C3xSk

�b(�)+2d(�)xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
;

where t(�) is the length of the co�nal strictly decreasing sequence of elements of

the same type in the one-line notation of �, and b(�) and d(�) are the numbers of

barred and double barred elements of �, respectively.

Proof. The proof is nearly the same as the proof of Lemma 5.12. We again have

tabloids �lled with the integers 1; 2; : : : ; n using the same process as above, and
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q-weights that count the number of inversions. Again, each brick is designated as

regular, barred, or double barred. The only di�erence is in the x-weights placed

on the cells in the �-brick tabloid. Here the x-weights are given by the following.

w(c) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1; c is at the end of a regular brick,

�; c is at the end of a barred brick,

�2; c is at the end of a double barred brick,

�1 or x; c is elsewhere in a regular brick,

�� or �x; c is elsewhere in a barred brick,

��2 or �x; c is elsewhere in a double barred brick.

The weights are the same as in the proof of the previous lemma, except that each

barred brick has an extra � and each double barred brick has an extra �2. Thus we

can pull out a product �b(�)+2d(�), where b(�) and d(�) are the number of barred and

double barred elements in the C3xSk-element formed by the �lling of the tabloid.

Once that is done, we perform the same involution and the same simpli�cation of

the sum, but each term in the sum now is multiplied by �b(�)+2d(�). �

We �nally consider the case where the tabloid is �lled with -bricks. We have

the following lemma.

Lemma 5.12.

X
`k

X
f2B;(k)

w(f)

"
k

1; : : : ; l()

#

�

l()Y
i=1

q(
i
2
) �(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
=

X
�2C3xSk

�2b(�)+d(�)xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
;

where t(�) is the length of the co�nal strictly decreasing sequence of elements of

the same type in the one-line notation of �, and b(�) and d(�) are the numbers of

barred and double barred elements of �, respectively.
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Proof. This proof is again nearly the same as the proofs of Lemmas 5.10 and 5.11.

The objects are the same, with the only di�erence being the x-weights placed on

the cells. These are given by the following.

w(c) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1; c is at the end of a regular brick,

�2; c is at the end of a barred brick,

�; c is at the end of a double barred brick,

�1 or x; c is elsewhere in a regular brick,

��2 or �2x; c is elsewhere in a barred brick,

�� or �x; c is elsewhere in a double barred brick.

This corresponds to each barred cell having an extra �2 and each double barred cell

having an extra �. We can then perform the same involution and simpli�cations

with each term in the sum multiplied by a factor �2b(�)+d(�). �

We are now ready to complete the proof of Theorem 5.9. We combine the

results of Lemmas 5.10, 5.11, and 5.12 with (5.10) to obtain the following.

3k+1[k]!�W (pk(X)) =
X

�2C3xSk

xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
+

X
�2C3xSk

�b(�)+2d(�)xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
+

X
�2C3xSk

�2b(�)+d(�)xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
=

X
�2C3xSk

�
1 + �b(�)+2d(�) + �2b(�)+d(�)

�
xdesW (�)+1�t(�)qinvW (�)

�
xt(�) � (x� 1)t(�)

�
:

Note that

1 + �b(�)+2d(�) + �2b(�)+d(�) =

8<
:0; b(�) + 2d(�) � 1; 2 (mod 3);

3; b(�) + 2d(�) � 0 (mod 3):

Thus the sum is actually over all elements � of C3xSk such that b(�) + 2d(�) � 0

(mod 3), that is, such that �(�) = 1. If we let C3xS
(1)

k
be the set of all such
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elements, we have

3k+1[k]!�
W
(pk(X)) =

X
�2C3xS

(1)

k

3xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
:

This completes the proof of Theorem 5.9. �

Our next step is to determine the image of 3k[k]!pk(Y ) under �W . This is given

by the following theorem.

Theorem 5.13. Let �
W

be the homomorphism de�ned in De�nition 5.5. Then

3k[k]!�
W
(pk(Y )) =

X
�2C3xS

(�)

k

xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
;

where C3xS
(�)
k

is the set f� 2 C3xSk : �(�) = �g, and t(�) is the length of the co�nal

strictly decreasing sequence of elements of the same type in the one-line notation

of �.

Proof. We again begin with a specialization of (4.19).

3p;(X)pk(Y )p;(Z) =
X

(�;�;)`k

X
f2F

�;�;

;�(k)�;

(�1)k�l(�)�l(�)�l()�2l
�(�)+l(�)w(f)

� e�(X + Y + Z)e�(X + �Y + �2Z)e(X + �2Y + �Z):

We multiply this by 3k[k]!, apply �
W
, and simplify in the same way as in the proof
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to Theorem 5.9 to get the following.

3k+1[k]!�
W
(pk(Y )) =

X
(�;�;)`k

X
f2F

�;�;

;�(k)�;

�2l
�(�)+l(�)w(f)

"
k

�1; : : : ; �l(�); �1; : : : ; �l(�); 1; : : : ; l()

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

�

l()Y
i=1

q(
i
2
) �(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
:

We interpret this as a sum of signed, weighted objects of shape ;�(k)�;, �lled with

bricks such that the single row in � is �lled with all �-, �-, or -bricks. We can

consider these cases separately, and divide the above sum into three sums, as in

the proof of Theorem 5.9. Note that here we must account for the term �2l
�(�)+l(�)

by multiplying by �2 the sum corresponding to �lling the row with �-bricks, and

multiplying by � the sum corresponding to �lling the row with -bricks. The above

sum is then equal to

=
X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

+ �2
X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�
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+ �
X
`k

X
f2B;(k)

w(f)

"
k

1; : : : ; l()

#

�

l()Y
i=1

q(
i
2
) �(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
:

These sums are the same as those evaluated in the proof of Theorem 5.9, so we

apply Lemmas 5.10, 5.11, and 5.12 to obtain the following.

3k+1[k]!�
W
(pk(Y )) =

X
�2C3xSk

xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
+

X
�2C3xSk

�b(�)+2d(�)+2xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
+

X
�2C3xSk

�2b(�)+d(�)+1xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
=

X
�2C3xSk

�
1 + �b(�)+2d(�)+2 + �2b(�)+d(�)+1

�
� xdesW (�)+1�t(�)qinvW (�)

�
xt(�) � (x� 1)t(�)

�
:

Note that

1 + �b(�)+2d(�)+2 + �2b(�)+d(�)+1 =

8<
:
0; b(�) + 2d(�) � 0; 2 (mod 3);

3; b(�) + 2d(�) � 1 (mod 3):

Thus the sum is actually over all elements � of C3xSk such that b(�) + 2d(�) � 1

(mod 3), that is, such that �(�) = �. If we let C3xS
(�)

k
be the set of all such

elements, we have

3k+1[k]!�W (pk(Y )) =
X

�2C3xS
(�)

k

3xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
:

This completes the proof of Theorem 5.13. �

Next, we determine the image of 3k[k]!pk(Z) under �W . This is given by the

following theorem.
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Theorem 5.14. Let �
W

be the homomorphism de�ned in De�nition 5.5. Then

3k[k]!�
W
(pk(Z)) =

X
�2C3xS

(�2)

k

xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
;

where C3xS
(�2)
k

is the set f� 2 C3xSk : �(�) = �2g, and t(�) is the length of the

co�nal strictly decreasing sequence of elements of the same type in the one-line

notation of �.

Proof. We again begin with a specialization of (4.19).

3p;(X)p;(Y )pk(Z) =
X

(�;�;)`k

X
f2F

�;�;

;�;�(k)

(�1)k�l(�)�l(�)�l()�l
�(�)+2l(�)w(f)

� e�(X + Y + Z)e�(X + �Y + �2Z)e(X + �2Y + �Z):

We multiply this by 3k[k]!, apply �
W
, and simplify in the same way as in the proof

to Theorem 5.9 to get the following.

3k+1[k]!�
W
(pk(Z)) =

X
(�;�;)`k

X
f2F

�;�;

;�;�(k)

�l
�(�)+2l(�)w(f)

"
k

�1; : : : ; �l(); �1; : : : ; �l(�); 1; : : : ; l()

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

�

l()Y
i=1

q(
i
2
) �(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
:

We interpret this as a sum of signed, weighted objects of shape ;�;�(k), �lled with

bricks such that the single row in � is �lled with all �-, �-, or -bricks. We can

consider these cases separately, and divide the above sum into three sums, as in

the proof of Theorem 5.9. Note that here we must account for the term �l
�(�)+2l(�)
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by multiplying by � the sum corresponding to �lling the row with �-bricks, and

multiplying by �2 the sum corresponding to �lling the row with -bricks. The

above sum is then equal to

=
X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + (x� 1)�i�1 + (x� 1)�i�1

�

+ �
X
�`k

X
f2B�;(k)

w(f)

"
k

�1; : : : ; �l(�)

#

�

l(�)Y
i=1

q(
�i
2
) �(x� 1)�i�1 + �(�x� �)�i�1 + �2(�2x� �2)�i�1

�

+ �2
X
`k

X
f2B;(k)

w(f)

"
k

1; : : : ; l()

#

�

l()Y
i=1

q(
i
2
) �(x� 1)i�1 + �2(�2x� �2)i�1 + �(�x� �)i�1

�
:

These sums are the same as those evaluated in the proof of Theorem 5.9, so we

apply Lemmas 5.10, 5.11, and 5.12 to obtain the following.

3k+1[k]!�
W
(pk(Z)) =

X
�2C3xSk

xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
+

X
�2C3xSk

�b(�)+2d(�)+1xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
+

X
�2C3xSk

�2b(�)+d(�)+2xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
=

X
�2C3xSk

�
1 + �b(�)+2d(�)+1 + �2b(�)+d(�)+2

�
� xdesW (�)+1�t(�)qinvW (�)

�
xt(�) � (x� 1)t(�)

�
:
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Note that

1 + �b(�)+2d(�)+1 + �2b(�)+d(�)+2 =

8<
:
0; b(�) + 2d(�) � 0; 1 (mod 3);

3; b(�) + 2d(�) � 2 (mod 3):

Thus the sum is actually over all elements � of C3xSk such that b(�) + 2d(�) � 2

(mod 3), that is, such that �(�) = �2. If we let C3xS
(�2)
k

be the set of all such

elements, we have

3k+1[k]!�
W
(pk(X)) =

X
�2C3xS

(�2)

k

3xdesW (�)+1�t(�)qinvW (�)
�
xt(�) � (x� 1)t(�)

�
:

This completes the proof of Theorem 5.14. �

If (�; �; �) ` n, let C3xSn(�; �; �) be the set of all � = �1�2 � � � �n such

that if � is broken up into segments of lengths �1; �2; : : : ; �l(�), �1; �2; : : : ; �l(�),

�1; �2; : : : ; �l(�), in that order, then the each segment corresponding to a part of �

has total sign 1, each segment corresponding to a part of � has total sign �, and

each segment corresponding to a part of � has total sign �2. We then have the

following corollary of Theorems 5.9, 5.13, and 5.14.

Corollary 5.15. Let �W be the homomorphism de�ned in De�nition 5.5. If k +

l +m = n, then

3n[n]!�
W
(pk(X)pl(Y )pm(Z)) =X
�2C3xSn(k;l;m)

xdesW;(k;l;m)(�)qinvW (�)
� x1�t(�)

�
xt(�) � (x� 1)t(�)

�

x1�u(�)
�
xu(�) � (x� 1)u(�)

�
x1�v(�)

�
xv(�) � (x� 1)v(�)

�
;

where t(�) is the length of the last strictly decreasing sequence of elements of the

same type in the �rst k elements of the one-line notation of �, u(�) is the length of

the co�nal strictly decreasing sequence of elements of the same type in the (k+1)st

through (k+ l)th elements of �, and v(�) is the length of the last strictly decreasing

sequence of elements of the same type in the last m elements of �.
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Note that in the above theorem, desW;(k;l;m) is desW;� where � is the nonde-

creasing rearrangement of (k; l;m). The proof follows those of Theorems 5.9, 5.13,

and 5.14. When creating a permutation such that decreasing sequences will �ll the

bricks, integers are associated with the bricks from right to left in rows, considering

the rows in order from top to bottom of the diagram.

This easily generalizes to the following corollary, in which the partition (�[�[�)

is de�ned to be the nondecreasing rearrangement of

(�1; : : : ; �l(�); �1; : : : ; �l(�); �1; : : : ; �l(�)).

Corollary 5.16. Let �
W

be the homomorphism de�ned in De�nition 5.5.

If (�; �; �) ` n, then

3n[n]!�
W
(p�(X)p�(Y )p�(Z)) =

X
�2C3xSn(�;�;�)

xdesW;(�[�[�)(�)qinvW (�)

l(�)Y
i=1

�
x1�ti(�)

�
xti(�) � (x� 1)ti(�)

��

�

l(�)Y
i=1

�
x1�ui(�)

�
xui(�) � (x� 1)ui(�)

��
�

l(�)Y
i=1

�
x1�vi(�)

�
xvi(�) � (x� 1)vi(�)

��
;

where ti(�), ui(�), and vi(�) denote the length of the co�nal decreasing sequence

of elements of the same type in the segment of � corresponding to �i, �i, �i, re-

spectively.

5.4 �W and �W Applied to s�(X + Y + Z), s�(X +

�Y + �2Z), and s�(X + �2Y + �Z)

Here we consider the images of the Schur basis of �W3
under the homomorphism

�W . In order to give the results for the Schur basis, we need some notation and

de�nitions. Given a partition � = (�1; �2; : : : ; �l), let D(�) be the length of the

Durfee square, that is, the largest square that will �t inside the digram of shape

�. We also de�ne the following partitions.
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D(�)

�(�)

�(�) F�
F(�)=�(�)

Figure 5.19: An example of D(�), �(�), �(�), and (�)=�(�).

� �(�) = (�1; : : : ; �D(�)) where �i = �l�D(�)+i �D(�), for i = 1; : : : ;D(�).

� �(�) = (�1; : : : ; �D(�)) where �i = �0
l�D(�)+i �D(�), for i = 1; : : : ;D(�).

� (�) = (�D(�) � �D(�)�1; �D(�) � �D(�)�2; : : : ; �D(�) � �1).

� �(�) = (�D(�) +D(�))D(�) + �(�).

An example of D(�), �(�), �(�), and the shape (�)=�(�) which will occur in

the following is given in Figure 5.19.

We now de�ne the concept of special rim hook tabloids. Consider a Ferrers'

diagram F� of shape �. Recall that a rim hook is a sequence of cells in F�, such

that any two consecutive cells share an edge, and removal of the cells from the

diagram results in another Ferrers' diagram. A rim hook tabloid of shape �, as

de�ned in (2.5), is a sequence of rim hooks that together form the shape �. A

special rim hook of � is a rim hook of � if one of its cells lies in the �rst column

of �. A special rim hook tabloid of shape � and type � is a rim hook tabloid of

shape � and type � such that all of the rim hooks are special rim hooks. The sign

of a special rim hook tabloid is de�ned by sgn(T ) =
Q

h2T sgn(h), where the sign

of a hook is sgn(h) = (�1)r(h)�1, and r(h) is the number of hooks occupied by the

hook h. If SRH�;� is the set of all special rim hook tabloids of shape � and type

�, de�ne

K�1
�;�

=
X

T2SRH�;�

sgn(T ):
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s s s s
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s s s
s s
s
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s s s s
s s s s
s s s
s s
s
s

Figure 5.20: An example of a rim hook tabloid and a special rim hook tabloid.

An example of a rim hook tabloid and a special rim hook tabloid, both of shape

(1; 1; 2; 3; 4; 4) and type (3; 3; 4; 5), are given in Figure 5.20.

We now have the necessary notation to state the image of the basis s�(X+Y +

Z)s�(X+�Y +�2Z)s�(X+�2Y +�Z) under �W . We consider each term separately.

Theorem 5.17. Let �W be the homomorphism de�ned in De�nition 5.1. If � ` n,

then

3nn!�W (s�(X + Y + Z)) =

D(�)+�D(�)X
m=D(�)

3m(1� x)n�mCm;�0; (5.11)

3nn!�W (s�(X + �Y + �2Z)) =

D(�)+�D(�)X
m=D(�)

3m(1� x)n�mC
(3)

m;�0
; (5.12)

and

3nn!�W (s�(X + �2Y + �Z)) =

D(�)+�D(�)X
m=D(�)

3m(1� x)n�mC
(3)
m;�0

; (5.13)

where

Cm;�0 =
X
�`n

l(�)=m

�
n

�1; : : : ; �m

�
K�1
�;�0
;
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C
(3)
m;�0

=
X
�`n

l(�)=m
3j�i8i

�
n

�1; : : : ; �m

�
K�1
�;�0
;

and �D(�) is the largest part of the partition �(�) de�ned above.

Proof. To prove (5.11), begin with the following identity, which is given in [7].

s� =
X
�`n

K�1
�;�0
e�:

Multiply by 3nn! and apply �W to this to obtain

3nn!�W (s�(X + Y + Z))

=
X
�`n

3nn!K�1
�;�0

l(�)Y
i=1

(1� x)�i�1 + (1 � x)�i�1 + (1� x)�i�1

3�i�i!

=
X
�`n

K�1
�;�

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(1� x)�i�1 + (1 � x)�i�1 + (1 � x)�i�1

�

=
X
�`n

K�1
�;�0

�
n

�1; : : : ; �l(�)

�
3l(�)(1� x)n�l(�):

For K�1
�;�0

to be nonzero, we need D(�) � l(�) � D(�)+�D(�). Thus we can rewrite

the above as

3nn!�W (s�(X + Y + Z))

=

D(�)+�D(�)X
m=D(�)

X
�`n

l(�)=m

K�1
�;�0

�
n

�1; : : : ; �m

�
3m(1� x)n�m

=

D(�)+�D(�)X
m=D(�)

3m(1 � x)n�mCm;�0:

This completes the proof of (5.11). The proof of (5.12) and (5.13) is similar. Begin
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with the same identity, multiply by 3nn!, and apply �W to obtain

3nn!�W (s�(X + �Y + �2Z)) = 3nn!�W (s�(X + �2Y + �Z))

=
X
�`n

3nn!K�1
�;�0

l(�)Y
i=1

(1� x)�i�1 + �(�� �x)�i�1 + �2(�2 � �2x)�i�1

3�i�i!

=
X
�`n

K�1
�;�

�
n

�1; : : : ; �l(�)

� l(�)Y
i=1

�
(1 � x)�i�1 + �(�� �x)�i�1 + �2(�2 � �2x)�i�1

�

=
X
�`n

K�1
�;�0

�
n

�1; : : : ; �l(�)

�
(1 � x)n�l(�)

l(�)Y
i=1

�
1 + ��i + �2�i

�
:

We have that 1+ ��i + �2�i = 0 unless �i � 0 (mod 3), when it equals 3. As before,

K�1
�;�0

= 0 unless D(�) � l(�) � D(�) + �D(�). Thus the above becomes

3nn!�W (s�(X + �Y + �2Z)) = 3nn!�W (s�(X + �2Y + �Z))

=

D(�)+�D(�)X
m=D(�)

X
�`n

l(�)=m
3j�i8i

K�1
�;�0

�
n

�1; : : : ; �m

�
3m(1� x)n�m

=

D(�)+�D(�)X
m=D(�)

3m(1 � x)n�mC
(3)
m;�0

:

�

5.4.1 Other Expressions for Cm;�0 and C
(3)
m;�0

We would like to �nd expressions for Cm;�0 and C
(3)
m;�0

that are easier to compute.

This is possible for Cm;�0. For C
(3)

m;�0
, the expression we obtain is not necessarily

easier to compute, but it is interesting because it involves a new lattice condition.

In order to de�ne this condition properly, we will pursue the following for arbitrary

CkxSn, rather than the speci�c case with k = 3. Now, we would like to �nd
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expressions for

Cm;�0 =
X
�`n

l(�)=m

�
n

�1; : : : ; �m

�
K�1
�;�0

(5.14)

and

C
(k)
m;�0

=
X
�`n

l(�)=m
kj�i

�
n

�1; : : : ; �m

�
K�1
�;�0

: (5.15)

In order to do this, however, we will need a number of de�nitions and lemmas.

The �rst thing we will consider is the case where m = D(�). Brenti [3] proved

and Beck [1] gave a combinatorial proof of the following identity.

Theorem 5.18.

CD(�);�0 =
X
�`n

l(�)=D(�)

�
n

�1; �2; : : : ; �D(�)

�
K�1
�;�0

= (�1)j�(�)jf(�)=�(�);

where F (�)=�(�) is the number of standard tableaux of shape (�)=�(�).

In order to examine C
(k)
m;�0

for m = D(�), we need more de�nitions. E�gecio�glu

and Remmel [7] introduced a sign-changing involution on the set of special rim

hook tabloids of shape � called hook switching. This maps a special rim hook

tabloid T to another special rim hook tabloid T 0 as follows. If two hooks hi and

hi+1 begin in the adjacent rows i and i + 1 in T , respectively, and end in rows s

and t, then E�gecio�glu and Remmel show that there is only one other way to cover

the cells occupied by hi and hi+1 by two other special rim hooks h0
i
and h0

i+1 which

begin in rows i and i + 1, respectively. Figures 5.21 and 5.22 show the two cases

that need to be considered, with the cells of the diagram represented by dots. In

case (a), t > s and h0
i
and h0

i+1 will end in rows t� 1 and s, respectively. In case

(b), t � s and h0
i
and h0

i+1 end in rows t and s + 1, respectively. Case (a) has a

special case in which hi+1 has length 1. In this case, the switch consists of gluing

together hi and hi+1 to form h0
i+1, and h

0
i
is an empty hook. We will not need this
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row i

row i+ 1

row s

row t

s s
s s
s s s
s s s s s
s s s s

-

s s
s s
s s s
s s s s s
s s s s

row i

row i+ 1

row s
row t� 1

Figure 5.21: Case (a), t > s.

row i

row i+ 1

row s
row ts s

s s
s s s
s s s s s
s s s s

-

s s
s s
s s s
s s s s s
s s s s

row i

row i+ 1

row t

row s+ 1

Figure 5.22: Case (b), t � s.

case in what follows, as our sum requires keeping the number of hooks constant.

Note that in both cases,

sgn(hi)sgn(hi+1) = �sgn(h
0
i
)sgn(h0

i+1);

thus this is a sign-changing involution. Note also that the lengths of the new hooks

are

jh0
i
j = jhi+1j � 1 and jh0

i+1j = jhij+ 1:

If there are two hooks hp and hq that begin in rows p and q, respectively, such

that hj begins with a vertical segment consisting of q� p cells in the �rst column,

we say the hooks are adjacent, and they can be switched in the following way. We

switch them in 2(q � p) � 1 steps. Let hp+1; hp+2; : : : ; hq�1 be the empty hooks

beginning in rows p + 1; p + 2; : : : ; q � 1. Let h
(r)
i

be the hook beginning in row

i after step r. In step r for 1 � r � q � p, switch h
(r�1)
q�r�1 and h

(r�1)
q�r , that is,

proceed from the top row to the bottom, switching adjacent hooks. At step r for

q � p + 1 � r � 2(q � p) � 1, switch h
(r�1)
r�q+2p and h

(r�1)
r�q+2p+1, that is, go back up

the rows, switching adjacent hooks. At each step, if we have changed hooks h
(r�1)
m
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s

s s s
s s s s
s s s
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s s s
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s
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s s s
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s s s
s
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s s s
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- - - - -

� �
6

Figure 5.23: Switching adjacent hooks beginning in nonadjacent rows.

and h
(r�1)
m+1 , we have lengths jh

(r)
m j = jh

(r�1)
m+1 j � 1 and jh

(r)
m+1j = jh

(r�1)
m j+ 1. Thus in

the end,

jh0
p
j = jhqj � (q � p); and jh0

q
j = jhpj+ (q � p);

where h0
p
= h

(2q�2p�1)
p and h0

q
= h

(2q�2p�1)
q are the hooks remaining at the end of

the process. In addition, since the sign changes at each step and there are an odd

number of steps, we have sgn(h0
p
)sgn(h0

q
) = �sgn(hp)sgn(hq). See Figure 5.23 for

an example of this process.

One may also switch two hooks which are not adjacent in the following way.

Note that by not adjacent we mean that there are nonempty hooks that begin

in rows between the rows in which the two hooks we want to switch begin. Say

we want to switch hi1 and him such that there are m� 2 hooks hi2; hi3 ; : : : ; him�1

between them. This can be done in 2m � 3 steps. Let the hooks after step j be

denoted by h
(j)
i1
; h

(j)
i2
; : : : ; j

(j)
im
. Then at step j for 1 � j � m� 1, switch h

(j�1)
ij

and

h
(j�1)
ij+1

. For m � j � 2m � 3, switch h
(j�1)
i2m�1�j

and h
(j�1)
i2m�2�j

. Since each switch of

two adjacent hooks gives a sign change and there are an odd number of switches

of adjacent hooks, we have

mY
j=1

sgn(hij) = �

mY
j=1

sgn(h
(2m�3)
ij

):

In addition, if hi1 begins in row p and him begins in row q, we have

jh
(2m�3)
i1

j = jhimj � (q � p) and jh
(2m�3)
im

j = jhi1 j+ (q � p):

An example is given in Figure 5.24.
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Figure 5.24: Switching nonadjacent hooks.

We say that two hooks are k-switchable if they begin in rows p and q such that

k divides q� p, and the hook beginning in row q is nonempty. If two k-switchable

hooks hi and hj are switched, then the new lengths di�er from the old by multiples

of k.

Using the de�nition of K�1
�;�0

, the expression (5.15) for m = D(�) can be rewrit-

ten as X
�`n

l(�)=D(�)
kj�i

�
n

�1; : : : ; �D(�)

� X
T2SRH�;�0

sgn(T );

where SRH�;�0 is the set of �-brick tabloids of shape �0. Thus we can interpret

this as a sum of signed objects, T 2 Oks. They are �-brick tabloids of shape �0

for a given partition �, such that the number of parts of � is equal to the size

of the Durfee square of � and each part of � is divisible by �. In addition, the

multinomial coe�cient �lls each tabloid with the integers 1; 2; : : : ; n in such a way

that the integers increase along the hooks from top to bottom and from left to

right.

We now label the hooks in an object T in the following way. The bottom-most

hook is labeled h1. Then h2; h3; : : : ; hi1 are the hooks, in order from the bottom

of T to the top, such that the di�erence between the row in which they begin and

the row in which h1 begins is divisible by k. hi1+1 is then the lowest hook not yet

labeled. The hooks hi1+2; hi1+3; : : : ; hi2 are then the hooks, in order from bottom

to top, such that the di�erence between the row in which they begin and the row
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s s s s s s s s s
s s s s s s s
s s s s s s s
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h1

h3

h2

h4

h5

Figure 5.25: An example of the hook labeling for k = 3.

5 6 9 12

2 8 11

4 7 10

3

1

= T

w(T )=2 3 2 2 1 1 2 3 1 2 2 1

s(T )=1 5 2

h1

h3

h2

Figure 5.26: An example of an object in Oks and its associated words.

in which hi1+1 begins is divisible by k. Continue in this manner until all of the

hooks are labeled. An example of this labeling system is given in Figure 5.25.

Now for each object T with its hooks labeled as above, we introduce two

words associated with the object. The hook word of T , w(T ) is given by w(T ) =

w1w2 � � �wn 2 f1; 2; : : : ;D(�)g
n such that wi = j if and only if i lies in hj in T .

The row word of T is given by s(T ) = s1s2 � � � sD(�) such that hi begins in row si

in T . An example of an object in Oks and its associated words is given in Figure

5.26.

We now perform an operation called r-pairing on the hook words of the objects.

This was �rst introduced by Remmel and Shimozono [8]. This operation consists
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drw(T ) = 3 2 2 2 3 1 1 2 2 2 1 3 2 2 2 2 3 1jjj j j j j

w(T ) = 3 2 2 2 3 1 1 2 2 2 1 3 2 2 2 1 3 1jjj j j j j� �� � � �
� �� � � �

Figure 5.27: An example of r-pairing and dr for r = 1.

of the following steps, ignoring any letter in w(T ) that is not an r or r + 1.

1. Pair any r and r + 1 that appear in that order with no r or r + 1 between

them.

2. Remove the letters paired in Step 1 and repeat until no pairs remain.

The remaining letters form a subword of the form (r+1)prq, called the r-unpaired

subword of w(T ). If w(T ) has the r-unpaired subword (r + 1)prq and hr and hr+1

begin in rows sr and sr+1 in T , respectively, then de�ne an operator dr by declaring

that in drw(T ) the r-unpaired subword of w(T ) is replaced by

(r + 1)q+sr+1�srrp+sr�sr+1 . Note that dr is only de�ned on w(T ) if p � sr+1 � sr.

An example of r-pairing and dr is given in Figure 5.27. This is given for r = 1 and

the word of r-unpaired letters are circled.

Proposition 5.19. If dr is de�ned on a hook word w(T ), then the r-unpaired

subwords of w(T ) and drw(T ) occupy the same positions.

Proof. It is enough to show that w(T ) = w1w2 � � �wn and drw(T ) = v1v2 � � � vn

have the same r-pairs at Step 1. Suppose that we have a wi = r and wj = r + 1

paired in w(T ) in Step 1, that is, there are no r's or r+1's between them. If vi = r

and vj = r + 1 in drw(T ), they will still be paired and there is no problem. So

consider what happens if one or both of them are di�erent.

Case 1. vi = r and vj = r. In this case only vj has changed, so wi = r

must have been paired and wj = r + 1 must not have been paired in w(T ). But

this contradicts the fact that there were no r's between wi and wj to pair with

wj = r + 1.
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Case 2. vi = r+1 and vj = r+1. Here, vi 6= wi, so wj = r+1 must have been

paired in w(T ), but wi = r + 1 must not have been. This is again a contradiction

since there were no r's between wi and wj to pair with wj .

Case 3. vi = r + 1 and vj = r. In this case, both wi and wj have changed,

therefore both must have been unpaired in w(T ). Again this is a contradiction

since there are no r's or r + 1's between them to prevent pairing wi and wj.

Thus the only possibility is that wi and wj are paired in both w(T ) and drw(T ),

and the two words have the same r-pairs. �

Let oi(r) be the number of occurrences of the letter r in the subword w1w2 � � �wi

of w(T ) = w1w2 � � �wn. We then have the following de�nition.

De�nition 5.20. An object T inOks is hook k-lattice if oi(r+1) < oi(r)+sr+1�sr

for all 1 � i � n and for all r such that k divides sr+1 � sr.

Proposition 5.21. An object T is hook k-lattice if and only if the r-unpaired

subword of w(T ) is (r + 1)prq with p < sr+1 � sr for all r such that k divides

sr+1 � sr.

Proof. In the following proof, we will use the notation given above for the number

of occurrences of the letter r in a subword of w(T ). In addition, let ui(r) be the

number of letters r in the subword w1w2 � � �wi that are unpaired in w(T ). Fix a

given r such that k divides sr+1 � sr. For simplicity, set a = sr+1 � sr � 1.

(=)) Assume that w(T ) is hook k-lattice. We need to prove that un(r+1) � a.

We do this by showing by induction on i that if ui(r+1) � a, then ui+1(r+1) � a.

The case i = 1 is trivially true unless k = 1 and a = 0. Then for w(T ) to be 1-hook

lattice, w(T ) cannot begin with r + 1 anyway. Now assume that ui(r + 1) � a. If

wi+1 6= r+1 or if this is a strict inequality, ui+1(r+1) � a is trivially true, so assume

ui(r+1) = a and wi+1 = r+1. If wi+1 is paired, then ui+1(r+1) = ui(r+1) � a.

If wi+1 is not paired, we can assume that ui+1(r) = 0, because if there were an

unpaired r, it would be paired with wi+1. Thus oi+1(r+1) is the sum of the number

of unpaired r+1's (ui+1(r+1)) and the number of paired r+1's (oi+1(r)). We then
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have ui+1(r + 1) = oi+1(r + 1) � oi+1(r) but this is less than or equal to a by the

lattice condition. Thus we must have that if ui(r + 1) � a, then ui+1(r + 1) � a,

and ultimately, un(r + 1) � a.

((=) Here we assume that un(r + 1) � a and show that for all i, oi(r + 1) �

oi(r) + a. We assume this is true for i and proceed by induction. Again, if a � 1,

the base case i = 1 is trivial. If k = 1 and a = 0, then by assumption there are no

unpaired r + 1's, so o1(r + 1) = 0 � o1(r) + a. Now assume oi(r + 1) � oi(r) + a.

If wi+1 6= r; r + 1, then oi+1(r) = oi(r) and oi+1(r + 1) = oi(r + 1) so it is clear

that oi+1(r+ 1) � oi+1(r) + a. If wi+1 = r, then we have oi+1(r+ 1) = oi(r+ 1) �

oi(r)+a+1 = oi+1(r)+a. That leaves us with the case that wi+1 = r+1 and thus

oi+1(r+ 1) = oi(r+ 1) + 1 and oi+1(r) = oi(r). If oi(r+ 1) < oi(r) + a, it is trivial

that oi+1(r + 1) � oi+1(r) + a, so consider the case in which oi(r + 1) = oi(r) + a.

Since r + 1's can only be paired with r's that come before them, at most oi(r) of

the r + 1's in w1w2 � � �wi can be paired. Thus ui(r + 1) � oi(r + 1) � oi(r) = a.

But since we are assuming that w(T ) has at most a unpaired r + 1's, we must

have ui(r + 1) = a and ui(r) = 0. Because of this, there are no r's to pair

wi+1 = r + 1 with, so we must have ui+1(r + 1) = a + 1, but this contradicts our

assumption. Hence if wi+1 = r + 1, we must have oi(r + 1) < oi(r) + a and hence

that oi+1(r + 1) � oi+1(r) + a. �

Given all this, we may now state the following theorem.

Theorem 5.22. Given a partition � ` n,

C
(k)

D(�);�0 =
X
�`n

l(�)=D(�)
kj�i

�
n

�1; : : : ; �D(�)

�
K�1
�;�0

=
X
�`n

l(�)=D(�)
kj�i

X
T2SRH

(k)

�;�0

sgn(T );

where SRH
(k)
�;�0

is the set of special rim hook tabloids of shape �0 and type � which

are hook k-lattice.

Proof. We perform the following involution � on the objects in Oks. For a given

object T , consider w(T ) from left to right and look for the �rst violation of the

hook k-lattice condition.
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� If there is no violation, then T is hook k-lattice and �(T ) = T .

� If there is a violation, let r+1 be the �rst letter to violate the hook k-lattice

condition. Then by Proposition 5.21, there are at least sr+1 � sr r-unpaired

r+1's in w(T ) and k divides sr+1� sr. Then set �(T ) to be the object with

s(�(T )) = s(T ) and w(�(T )) = drw(T ).

First, we show that this is a well-de�ned involution. If T is hook k-lattice, this

is trivial, so assume not. Then there is a least r+1 such that there are at leftmost

sr+1�sr r-unpaired (r+1)'s in w(T ) and k divides sr+1�sr. By the �rst condition,

dr is de�ned for w(T ). By Proposition 5.19, the r-unpaired subwords of w(T ) and

drw(T ) occupy the same positions, so the �rst violation of the lattice condition in

drw(T ) will be in the same position as that of w(T ). Moreover, if the r-unpaired

subword of w(T ) is (r+1)prq, then that of drw(T ) is (r+1)q+sr+1�srrp+sr�sr+1 , and

then that of drdrw(T ) is (r + 1)p+sr�sr+1�(sr+1�sr)rq+sr+1�sr+(sr�sr+1) = (r + 1)prq,

showing that � is an involution. That the involution is sign-changing can be seen

in the following way. We have s(�(T )) = s(T ) so the hooks in �(T ) begin in the

same rows as the hooks in T do. However, the lengths of the hooks change. Let

P (r) be the number of r-pairs in w(T ) and therefore in drw(T ). Then the length

of the hook hr in T is jhrj = P (r) + q but the length of the corresponding hook

h0
r
in �(T ) is jh0

r
j = P (r) + p + sr � sr+1. Similarly, the lengths of the hooks

hr+1 and h
0
r+1 are jhr+1j = P (r) + q and jh0

r+1j = P (r) + p + sr+1 � sr. We thus

have jh0
r
j = jhr+1j � (sr+1 � sr) and jh

0
r+1j = jhrj + (sr+1 � sr), the same change

of lengths as in the switching of the hooks hr and hr+1. In addition, given the

lengths of some hooks, the rows in which each of them must begin, and the cells

they must cover, there is only one way to place the hooks. Thus �(T ) has the same

rim hook con�guration as the result of switching hr and hr+1 in T , and therefore

sgn(�(T )) = �sgn(T ). The �xed points of the involution are then those objects

T which are hook k-lattice, completing the proof. �

In order to state our expressions for Cm;�0 and C
(k)
m;�0

, we need the language of

rborder rim hook tabloids and hook shifting.
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Figure 5.28: An example of hook shifting.

Hook Shifting, introduced by White [11], is a method of switching a hook from

the inside of a tabloid to the northeastern border or from the border to the inside of

the tabloid. If beginning from the inside, the hook is shifted upward and outward

at a diagonal. Meanwhile, another hook is shifted down to occupy the cells that

the shifted hook occupied. It is easiest to understand this procedure through an

example, such as that given in Figure 5.28, where the bold hook is shifted to the

outside.

An r-border rim hook tabloid of shape �, h� = (h1; h2; : : : ; hk), is de�ned in

the following way. Place r hooks h1; h2; : : : ; hr into a Ferrers' diagram of shape �

such that

� h1 is a rim hook of the Ferrers' diagram of shape �, and for 1 < i � r, hi is a

rim hook of the Ferrers' diagram of shape � � (h1; h2; : : : ; hi�1), that is, the

diagram of the shape of � with the hooks h1; h2; : : : ; hi�1 removed.

� hi begins above hj for i < j the �rst cell of hi is northwest of the �rst cell of

hj.

An example of a 4-border rim hook tabloid of shape (12; 33; 4; 62) is given in Figure

5.29.

Let jhij be the length of the hook hi, that is the number of cells it occupies.

De�ne the sign of a hook as for any rim hook, that is, sgn(hi) = (�1)r(hi)�1 where

r(hi) is the number of rows the hook occupies. Then the sign of the r-border rim

hook tabloid is sgn(H�) =
Q

r

i=1 sgn(hi).
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h1

h2

h3

h4

Figure 5.29: An example of a 4-border rim hook tabloid of shape (12; 33; 4; 62).

Let Br
�
be the set of all r-border rim hook tabloids of shape �. Let �

H
be the

shape � � (h1; h2; : : : ; hr). Then set sh(H�) = �=�
H
. This is the shape formed

by the cells in which the hooks lie. In the following, the shape of the r-border

rim hook tabloid will correspond to the shape of �(�) for some partition �. Let

��sh(H�(�)) be the Ferrers' diagram of the shape which remains after the r-border

rim hooks are removed from �(�).

We are now ready to give our expressions for Cm;�0 and C
(k)

m;�0
. The expression

for Cm;�0 is due to Beck and a proof can be found in [1].

Theorem 5.23. Let � be a partition of n, D(�) � m � D(�) + �D(�), and r =

m�D(�). Then

Cm;�0 =
X

H�(�)=(h1;::: ;hr)2Br�

sgn(H�(�))

�
n

jh1j; : : : ; jhrj

�

� (�1)j�(��sh(H�(�)))jf(��sh(H�(�)))=�(��sh(H�(�)));

and

C
(k)

m;�0
=

X
H�(�)=(h1;::: ;hr)2B

r
�

kjhi

sgn(H�(�))

�
n

jh1j; : : : ; jhrj

�

�
X
!`j�j

l(!)=D(�)
kj!i

X
T2SRH

(k)

!;�0

sgn(T ); (5.16)
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where SRH
(k)
!;�0

is the set of special rim hook tabloids of shape �0 and type ! which

are hook k-lattice.

Proof. We will prove (5.16). To do this, we interpret the expressions in (5.15) and

(5.16) as two sets of signed objects, then give a bijection between the two sets to

show that the expressions are equal.

First, we can express C
(k)
m;�0

as

C
(k)
m;�0

=
X
�`n

l(�)=m
kj�i

X
T2SRH�;�0

�
n

�1; : : : ; �m

�
sgn(T );

where SRH�;�0 is the set of special rim hook tabloids of shape �0 and type �. We

interpret the right hand side of the above equation as a sum of signed objects

o 2 OsA. These objects are special rim hook tabloids of shape �0 and type � such

that l(�) = m and each part of � is divisible by k. The binomial coe�cient �lls

the cells of the objects with the integers 1; 2; : : : ; n such that each integer appears

exactly once, and the integers increase along each hook, from top to bottom and

from left to right. Each hook is given a sign sgn(h) = (�1)r(h)�1 where r(h) is the

number of rows occupied by the hook h. The sign of an object o is then de�ned

by sgn(o) =
Q

h2o sgn(h). Note that this is the same as the sign of a rim hook

tabloid. Thus we can see thatX
�`n

l(�)=m
kj�i

X
T2SRH�;�0

�
n

�1; : : : ; �m

�
sgn(T ) =

X
o2OsA

sgn(o):

We now consider the right hand side of the equation (5.16), letting � be the

shape � �H�(�). By Theorem 5.22, this expression is equal to

X
H�(�)=(h1;::: ;hr)2B

r
�

kjhi

sgn(H�(�))

�
n

jh1j; : : : ; jhrj

�

�
X
!`j�j

l(!)=D(�)
kj!i

X
T2SRH!;�0

�
j�j

!1; : : : ; !D(�)

�
sgn(T ):
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Figure 5.30: An example of an object in OsB.

We interpret this as a sum of signed objects o 2 OsB. The objects are r-border

rim hook tabloids H�(�) of shape �(�) such that each hook has length divisible by

k, and special rim hook tabloids of shape �0 such that the special rim hook tabloid

is �lled with D(�) = D(�) hooks each of which has length divisible by k. The

shapes are joined into a single object as shown in Figure 5.30.

The multinomial coe�cient
�

n

jh1j;::: ;jhr j

�
�lls the the r-border rim hooks with

integers from 1; 2; : : : ; n such that the integers increase along the hooks, it also

leaves n�jh1j�jh2j�� � ��jhrj = j�
0j integers unused. The multinomial coe�ecient�

j�j

!1;::: ;!D(�)

�
then �lls the hooks of the special rim hook tabloid with the remaining

integers. The sign of an object is de�ned by sgn(o) =
Q

h2o sgn(h) where the sign

of a hook is sgn(h) = (�1)r(h) and r(h) is the number of rows occupied by the

hook h. Thus it is clear that we can write

X
H�(�)=(h1;::: ;hr)2Br�

kjhi

sgn(H�(�))

�
n

jh1j; : : : ; jhrj

�

�
X
!`j�j

l(!)=D(�)
kj!i

X
T2SRH!;�0

�
j�j

!1; : : : ; !D(�)

�
sgn(T ) =

X
o2OsB

sgn(o):

We now give a bijection between the two sets of signed objects OsA and OsB.

Consider a 2 OsA. Draw a diagonal line from the lower right corner of �(�)
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in the Ferrers diagram of �0, extending down to the left. Then there are exactly

r = l(�)�D(�) hooks that lie entirely above the diagonal in a. To see this, note

that exactly l(�(�)) hooks cross the diagonal and at most D(�) � l(�(�)) hooks

start in the �rst column below the diagonal. All of these r hooks can be shifted

to the border of �(�). We order these hooks from bottom to top according to the

row in which the hooks start. The hook that starts in the topmost cell is denoted

by h1, the next lowest is h2, and so on. First, we shift h1 to the border of �(�).

Then, shift h2 to the border of �(�) � h1, and so on. Because we shift the hooks

along diagonals, the relative positions of the hooks will not change. We clearly

obtain an object in OsB.

Now, consider an object b 2 OsB. Label the r-border rim hooks from top to

bottom, such that h1 is the topmost hook and hr is the bottommost. First shift hr

down and to the left so that it begins in the �rst column. Then shift hr�1 in the

same way, and so on. An example of the bijection is given in Figure 5.31. In [1],

Beck shows that since the movement of the hooks is along diagonals, no border rim

hook begins on the dame diagonal as one of the D(�) = D(�) special rim hooks in

the tabloid of shape �0 Because of considerations of space, we do not include the

proof here.

�

5.4.2 q-analogs for the Schur Basis

It is also possible to give an expression for the image of the Schur basis under

�
W
. The results follow.

Theorem 5.24. Let �
W

be the homomorphism de�ned in De�nition 5.5. If � ` n,

then

3n[n]!�W (s�(X + Y + Z)) =
X

�2C3xSn

qinvW (�)rW;�(�); (5.17)

3n[n]!�W (s�(X + �Y + �2Z)) =
X

�2C3xSn

�(�)qinvW (�)rW;�(�); (5.18)
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Figure 5.31: An example of the bijection between OsA and OsB.

and

3n[n]!�
W
(s�(X + �2Y + �Z)) =

X
�2C3xSn

�(�)qinvW (�)rW;�(�); (5.19)

where

rW;�(�) =
X
�`n

K�1
�;�
xdesW;�(�);

invW (�) is the number of C3xSn-inversions of �, and desW;�(�) is the number of

C3xSn �-descents of �.

Proof. Begin with the following expression, given in [7].

s� =
X
�`n

K�1
�;�
h�:

To prove (5.17), multiply by 3n[n]! and apply �
W

to get

3n[n]!�
W
(s�(X + Y + Z)) =

X
�`n

K�1
�;�
�
W
(h�(X + Y + Z))

=
X
�`n

K�1
�;�

X
�2C3xSn

qinvW (�)xdesW;�(�)

=
X

�2C3xSn

qinvW (�)rW;�(�):
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The proofs of (5.18) and (5.19) are similar. �

5.5 �W Applied to Other Bases of �W3

Here, for the sake of completeness, we determine the images of the monomial

and forgotten bases by writing them in terms of the power basis and then applying

�W . For example, using (4.29) we get

3nn!�W (m�(X + Y + Z)m�(X + �Y + �2Z)m�(X + �2Y + �Z))

=
X

(�;�;)`n

X
f2F

�;�;�

����

(�1)l(�)+l(�)+l()�l(�)�l(�)�l(�)�2l
�(�)+l�(�)+l�()+2l�()w(f)

�
3nn!

z�z�z
�W (p�(X)p�(Y )p(Z)):

A similar approach is taken with the forgotten basis. We then have the following

theorem.

Theorem 5.25. If (�; �; �) ` n, then

3nn!�W (m�(X + Y + Z)m�(X + �Y + �2Z)m�(X + �2Y + �Z)) =

=
X

(�;�;)`n

X
f2F

�;�;�

����

(�1)l(�)+l(�)+l()�l(�)�l(�)�l(�)�2l
�(�)+l�(�)+l�()+2l�()w(f)

�
X

�2C(�;�;)

xdeW (�):

and

3nn!�W (f�(X + Y + Z)f�(X + �Y + �2Z)f�(X + �2Y + �Z)) =X
(�;�;)`n

X
f2F

�;�;�

����

(�1)n�l(�)�l(�)�l(�)�2l
�(�)+l�(�)+l�()+2l�()w(f)

X
�2C(�;�;)

xdeW (�):

5.6 The Permutation Enumeration of CkxSn

Here we will indicate how the previous results for C3xSn can be extended to

arbitrary wreath products CkxSn. We begin by de�ning a number of statistics
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on elements of CkxSn. If � = �1�2 � � � �n 2 CkxSn, the sign of the element �i is

denoted �(�i) and the sign of � is the product �(�) =
Q

n

i=1 �(�i). The number of

CkxSn-descents of � is given by

desWk
(�) = jfi : 1 � i � n � 1; �(�1) = �(�i+1); �i > �i+1gj:

Given a partition � = (�1; �2; : : : ; �l), the number of CkxSn �-descents, denoted

desWk;�
(�) is de�ned in the following way. Write � in one-line notation and break it

into segments of lengths �1; �2; : : : ; �l. Then count only the C3xSn-descents which

occur with i and i + 1 in the same segment. The number of CkxSn-inversions is

given by

invWk
(�) = jf(i; j) : 1 � i < j � n; �i >� �jgj;

where � is the partial order

1 � �1 � � � � � �k�11 <� 2 � �2 � � � � � �k�12 <� � � � <� n � �n � � � � � �
k�1n:

The number of CkxSn-descedances of the element � is de�ned on the cycles of �.

Write � in cycle notation as

� = (�11; �12; : : : ; �1l1)(�21; �22; : : : ; �2l2 ) � � � (�m1
; �m2

; : : : ; �mlm
):

Then the number of CkxSn-descadences of � is given by

deWk
(�) =

kX
i=1

(jfj : 1 � j � li � 1; �(�ij) = �(�ij+1); �ij >� �ij+1gj

+ �(�ili >� �i1)�(�(�ili) = �(�i1)));

where �(statement) is 1 if the statement is true and 0 if it is false.

We also need de�nitions of analogs of � and � for CkxSn. These are given below.

De�nition 5.26. The homomorphism �Wk
: �Wk

�! Q[�][x] is de�ned on the

elementary basis by

�wk(en(�
m�1X(1) + � � � �m�kX(k))) =

�m�1(�m�1 � �m�1x)n�1 + � � �+ �m�k(�m�k � �m�kx)n�1

knn!

for each m = 1; 2; : : : ; k.
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De�nition 5.27. The homomorphism �
Wk

: �Wk
�! Q[q][�][x] is de�ned on the

elementary basis by

�
Wk

(en(�
m�1X(1) + � � � �m�kX(k))) =

q(
n

2)
�
�m�1(�m�1 � �m�1x)n�1 + � � �+ �m�k(�m�k � �m�kx)n�1

�
kn[n]!

for each m = 1; 2; : : : ; k.

5.6.1 �Wk
-Homogeneous Bases Under �Wk

When �Wk
and �

Wk
are applied to the homogeneous basis, the following results

are obtained.

Theorem 5.28. Let �Wk
and �

Wk
be the homomorphisms de�ned in De�nitions

5.26 and 5.27. Then for m = 1; 2; : : : ; k, we have

knn!�Wk
(hn(�

m�1X(1) + � � �+ �m�kX(k))) =
X

�2CkxSn

�(�)mxdesWk
(�); (5.20)

knn!�Wk
(h�(�

m�1X(1) + � � � + �m�kX(k))) =
X

�2CkxSn

�(�)mxdesWk;�
(�); (5.21)

knn!�
Wk
(hn(�

m�1X(1) + � � �+ �m�kX(k))) =
X

�2CkxSn

�(�)mxdesWk
(�)qinvWk

(�); (5.22)

and

knn!�
Wk
(h�(�

m�1X(1) + � � �+ �m�kX(k))) =
X

�2CkxSn

�(�)mxdesWk;�
(�)qinvWk

(�);

(5.23)

where desWk
(�), desWk;�

(�), and invWk
(�) are the number of CkxSn-descents, the

number of CkxSn �-descents, and the number of CkxSn inversions of �, respectively.

We will sketch the proof of (5.20). The variations in the proof necessary to prove

(5.21), (5.22), and (5.23) are similar to the variations in the proof of Theorem 5.2

necessary to prove (5.1), (5.2), (5.3), (5.4), (5.5), and Theorem 5.6.
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Proof. We begin with the relation

hn =
X
�`n

(�1)n�l(�)B�;(n)e�:

Multiply by knn! and apply �Wk
to obtain

knn!�Wk
(hn(�

m�1X(1) + � � �+ �m�kX(k)))

=
X
�`n

(�1)n�l(�)B�;(n)k
nn!

l(�)Y
i=1

�m�1(�m�1 � �m�1x)�i�1 + � � � + �m�k(�m�k � �m�kx)�i�1

k�i�i!

=
X
�`n

X
T2B�;(n)

�
n

�1; : : : ; �l(�)

�

�

l(�)Y
i=1

�
�m�1(�m�1x� �m�1)�i�1 + � � �+ �m�k(�m�kx� �m�k)�i�1

�
: (5.24)

We interpret this as a sum of signed, weighted objects o 2 Okhn similar to

those in the proof of Theorem 5.2. They are �-brick tabloids of shape (n), �lled

with the integers 1; 2; : : : ; n such that each integer is used exactly once and the

integers decrease within each brick. Each brick is designated as an i-brick for some

i = 1; 2; : : : ; k. Each cell c is weighted in the following way.

w(c) =

8<
:
�mi; c is at the end of an i-brick,

��mi or �mix; c is elsewhere in an i-brick.

De�ne the weight of an object o by w(o) =
Q

c2o w(c). Then we can write the

expression in (5.24) as
P

o2Okhn
w(o).

We perform an involution on the objects. Traverse the row from left to right.

At the �rst occurrence of one of the following, perform the appropriate operation.

� If a cell c has weight ��mi, split the brick after c and change the weight of c

from ��mi to +�mi.

� If there is a decrease between the integer �lling of the last cell c of a brick

and the �rst cell of the next brick and both are i-bricks for some i, join the

two bricks together and change the weight of c from +�mi to ��mi.
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The �xed points of the involution are �-brick tabloids of shape (n) �lled with the

integers 1; 2; : : : ; n such that the integers decrease within each brick and increase

between consecutive bricks of the same type. Each brick is designated as an i-brick

for some i = 1; 2; : : : ; k. Each cell is weighted by the following

w(c) =

8<
:�

mi; c is at the end of an i-brick,

�mix; c is elsewhere in an i-brick.

Reading left to right, we consider the �lling to be an element of CkxSn with each

cell in an i-brick corresponding to an element with sign �i, the descents of the

element have an x-weight and cells that do not correspond to a descent do not

have an x-weight. Thus the x-weights count the CkxSn-descents. In addition, each

cell in an i-brick has a sign of �mi = (�i)m. The sign of the element is obtained by

contributing �i for each i-element. Thus the sign counted here is the mth power of

the sign of the element. This completes the proof of (5.20). �

5.6.2 �Wk
-Power Symmetric Functions Under �Wk

When �Wk
is applied to the power basis, the following result is obtained.

Theorem 5.29. Let �Wk
be the homomorphism de�ned in De�nition 5.26. If

(�(1); : : : ; �(k)) ` n, then

knn!

z�(1) � � � z�(k)
�Wk

(p�(1)(X
(1)) � � � p�(k)(X

(k))) =
X

�2C
(�(1) ;::: ;�(1))

xdeWk
(�);

where C(�(1);::: ;�(k)) is the conjugacy class of CkxSn indexed by (�(1); : : : ; �(k)) and

deWk
(�) is the number of CkxSn-descedances of �.

In order to prove Theorem 5.29, we need the following lemma regarding the

transition matrix between the basis p
(1)
�
(X(1)) � � � p

(k)
�
(X(k)) and the basis

e�(1)(�
1�1X(1) + � � �+ �1�kX(k)) � � � e�(k)(�

k�1X(1) + � � �+ �k�kX(k)).
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Lemma 5.30. If (�(1); : : : ; �(k)); (�(1); : : : ; �(k)) ` n, then

p
�(1)

(X(1)) � � � p
�(k)

(X(k)) =
X

f2F
�(1);::: ;�(k)

�(1)������(k)

(�1)n�l(�
(1))�����l(�(k))

kl(�
(1))+���+l(�(k))

�
Pk

s;t=1 �stl
�(t)(�(s))

� w(f)e
�(1)

(�1�1X(1) + � � �+ �1�kX(k)) � � � e
�(k)

(�k�1X(1) + � � �+ �k�kX(k));

where l�
(t)

(�(s)) is the number of �(t)-rows that appear in �(s).

Proof. We begin with the expression

pn =
X
�`n

(�1)n�l(�)w(B�;(n))e�:

For t = 1; 2; : : : ; k, we then have

�t�1pn(X
(1)) + � � �+ �t�kpn(X

(k)) = pn(�
t�1X(1) + � � �+ �t�kX(k)) =X

�(t)`n

(�1)n�l(�
(t))w(B

�(t);(n))e�(t)(�
t�1X(1) + � � �+ �t�kX(k)):

Given this, for each s = 1; 2; : : : ; k, we have

kpn(x
(s)) =

kX
t=1

��stpn(�
t�1X(1) + � � �+ �t�kX(k))

=

kX
t=1

X
�(t)`n

��st(�1)n�l(�
(t))w(B

�(t);(n))e�(t)(�
t�1X(1) + � � �+ �t�kX(k)):

We interpret this as a sum of signed, weighted objects. We have diagrams

of shape �(1) � � � � � �(k) such that each row is �lled with all �(i)-bricks for some

i = 1; 2; : : : ; k. We use the above expression to weight the bricks of the tabloid.

The coe�cient of e
�(1)

(�1�1X(1) + � � � + �1kX(k)) � � � e
�(k)

(�k1X(1) + � � �+ �kkX(k)) in

kl(�
(1))+���+l(�(k))p�(1)(X

(1)) � � � p�(k)(X
(k)) is given by

(�1)n
X

f2F
�(1);::: ;�(k)

�(1)������(k)

Wk(f);
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where

Wk(f) =
Y
b2f

wk(b)

is the product of the weights of the bricks, and

wk(b) =

8<
:
���stjbj; b is at the end of an �(t)-row in �(s),

�1; otherwise.

Writing the above coe�cient in terms of the usual weight gives

(�1)n
X

f2F
�(1);::: ;�(k)

�(1)������(k)

(�1)l(�
(1))+���+l(�(k))�

Pk
s;t=1 �stl

�(t)(�(s))w(f);

where l�
(t)

(�(s)) is the number of �(t)-rows appearing in �(s). This completes the

proof of Lemma 5.30. �

We are now ready to prove Theorem 5.29.

Proof. We multiply the expression given in Lemma 5.30 by k
n
n!

z
�(1)

���z
�(k)

and apply

�Wk
to obtain the following expression.

knn!

z�(1) � � � z�(k)
�Wk

(p�(1)(X
(1)) � � � p�(k)(X

(k))) =

X
(�(1);::: ;�(k))`n

X
f2F

�(1);::: ;�(k)

�(1)������(k)

knn!(�1)n�l(�
(1))�����l(�(k))

kl(�
(1))+���+l(�(k))z

�(1)
� � � z

�(k)

�
Pk

s;t=1 �stl
�(t)(�(s))w(f)

�

kY
m=1

l(�(m))Y
i=1

�m�1(�m�1 � �m�1x)�
(m)

i �1 + � � �+ �m�k(�m�k � �m�kx)�
(m)

i �1

k�
(m)

i �
(m)
i

!
:

This in turn is equal to

X
(�(1);::: ;�(k))`n

X
f2F

�(1);::: ;�(k)

�(1)������(k)

1

kl(�
(1))+���+l(�(k))z

�(1)
� � � z

�(k)

� �
Pk

s;t=1 �stl
�(t)(�(s))w(f)

�
n

�
(1)
1 ; : : : ; �

(1)

l(�(1))
; : : : ; �

(k)
1 ; : : : ; �

(k)

l(�(k))

�

�

kY
m=1

l(�(m))Y
i=1

�
�m�1(�m�1x� �m�1)�

(m)

i �1 + � � �+ �m�k(�m�kx� �m�k)�
(m)

i �1
�
:
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If bm;i is the brick in f corresponding to �
(m)
i

, de�ne

�̂
(m)
i

=

8<
:
�
(m)
i
� 1; bm;i is at the end of a row in f ,

�
(m)
i
; otherwise.

Then set ~�(m)(f) = (�̂
(m)
1 ; �̂

(m)
2 ; : : : ; �̂

(m)

l(�(m))
). We may then rewrite the above as

X
(�(1);::: ;�(k))`n

X
f2F

�(1);::: ;�(k)

�(1)������(k)

1

kl(�
(1))+���+l(�(k))z

�(1)
� � � z

�(k)

�
P

k
s;t=1

�stl�
(t)

(�(s))

� n(n� 1) � � � (n� l(�(1))� � � � � l(�(k)) + 1)

�
n� l(�(1))� � � � � l(�(k))

~�(1)(f) � � � ~�(k)(f)

�

�

kY
m=1

l(�(m))Y
i=1

�
�m�1(�m�1x� �m�1)�

(m)

i �1 + � � �+ �m�k(�m�kx� �m�k)�
(m)

i �1
�
:

We interpret the above expression as a sum of signed, weighted objects o 2 Okp.

They are elements of F�
(1)
;::: ;�

(k)

�(1)������(k)
, �lled with the integers 1; 2; : : : ; n, such that each

integer is used exactly once, the numbers decrease within each brick, and the

smallest number in each row appears at the end of the row. In addition, one

cell in each row is distinguished. Each brick is designated as an i-brick for some

i = 1; 2; : : : ; k. Each cell is given a weight according to the following rule. If c is

a cell in an i-brick in an �(m)-row, then

w(c) =

8>>>><
>>>>:
�m(i�s); c is at the end of a row in �(s),

�mi; c is at the end of a brick but not a row,

��mi or �mix; otherwise.

We wish to ignore the distinguished cell and the order of the rows with in each of

�(1); : : : ; �(k), so we divide by z�(1) � � � z�(k).

We perform the following involution on the objects. Traverse the diagram,

considering �rst �(1), then �(2), and so on, and in each part, considering the rows

from top to bottom and within each row, considering the cells from left to right.

Look for the �rst occurrence of one of the following and perform the appropriate

operation.
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� If a cell c has weight ��mi, divide the brick after c and change the weight of

c from ��mi to +�mi.

� If there is a decrease from the integer �lling of the last cell c in a brick to that

of the �lling of the �rst cell in the next brick and both bricks are i-bricks for

some i and lie in the same row, join the two bricks together and change the

weight of c from +�mi to ��mi

The involution has �xed points with the following properties. They are elements

of F�
(1)
;::: ;�

(k)

�(1)������(k)
, �lled with the integers 1; 2; : : : ; n such that the integers decrease

within each brick and increase between consecutive bricks of the same type, with

the smallest number in each row appearing at the end. The weight of a cell c in

an i-brick in an �(m)-row is given by

w(c) =

8>>>><
>>>>:
�m(i�s); c is at the end of a row in �(s),

�mi; c is at the end of a brick but not a row,

�mix; otherwise.

De�ne a k-volution to be a function from a set S to itself such that for any

s 2 S, fk(s) = s. We now perform a k-volution on the �xed points of the previous

involution. For m = 1; 2; : : : ; k � 1, change each �(m)-row into an �(m+1)-row. In

addition, change each �(k)-row into an �(1)-row. All of this is to be done with the

appropriate changes of weight. Apply this k-volution k times.

Consider an �-row in one of the objects, and say that its weight is w. Let bi be

the number of cells that appear in i-bricks in the row. If we assume that the row

lies in �(s), then when the row is an �(m)-row, its weight can be written as

��ms+
Pk

i=1mibiw:

The sum of these weights is

w

 
kX

m=1

�m(�s+
Pk

i=1 ibi)

!
:
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If
P

k

i=1 ibi � s (mod k), then this sum is kw. Otherwise, the sum is 0. Thus we

are only left with rows in �(s) with
P

k

i=1 ibi � s (mod k). It no longer matters

what type of row we have, since it can be considered as an �(k)-row, so we must

divide by kl(�
(1))+���+l(�(k)).

Our objects are now diagrams of shape �(1) � � � � � �(k), �lled with bricks of

lengths the parts of �(1); : : : ; �(k). Each brick is designated as an i-brick for some

i. The cells are �lled with the integers 1; 2; : : : ; n such that each integer is used

exactly once, the smallest integer in each row appears at the end of the row, the

integers decrease within each brick, and they increase between consecutive bricks

of the same type in the same row. The cells are weighted according to the following

rule.

w(c) =

8<
:1; c is at the end of a brick,

x; otherwise.

Interpret each row as a cycle in a CkxSn element, where if a is the �lling of a

cell in an i-brick, then it corresponds to �ia in the CkxSn cycle. Within each

cycle, decreases between elements of the same type are weighted by x. All other

transitions are weighted by 1. Note that there can never be a decrease from the

last cell of the row to the �rst cell, since the last cell is �lled with the smallest

integer in the row. Thus the x-weight counts the decedences of the cycle. In �(s),

we have cycles with
P

k

i=1 ibi � s (mod k), so the sign of the cycle is �s. This holds

for each s, so the element consisting of the cycles formed by all of the rows belongs

to the conjugacy class indexed by (�(1); : : : ; �(k)). �



Conclusion

We have extended the results of Brenti, Beck and Remmel to analogous results

for the wreath products CkxSn. There are, however, many questions remaining

which are related to the problems discussed in this text and which might be solved

using combinatorial methods. First of all, we would like to �nd a more satisfactory

expression for the image of s�(X+�Y +�2Z) and s�(X+�2+�Z) under �W , and we

would like to determine if there are other uses for the involution we used to switch

hooks while preserving restricions on their lengths. In addition, the methods used

here could perhaps be extended to other groups, such as the alternating group, the

dihedral group, or other Coxeter groups. If they can be extended, one must �nd

the best way to de�ne statistics on elements of the groups that may less resemble

permutations than the elements of the wreath products studied here. There also

seems to be a connection between the type of permutation enumeration studied

here and some classical identities regarding permutation statistics which deserves

further study. We hope to pursue the solutions to some of these problems in the

future.
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Appendix A

The Permutation Enumeration of

C3xSn for Another Choice of

Ordering

Here we state without proof the de�nitions and results for an ordering on the

letters that make up elements of C3xSn which is di�erent than that in Chapter 5.

We de�ne a partial ordering, �0, on the letters by the following.

1 <�0 2 <�0 � � � <�0 n

1 <�0 2 <�0 � � � <�0 n
<�0 n <�0 n� 1 <�0 � � � <�0 1:

We will also make use of the following partial order that was also used in Chapter

5.

1 � 1 � 1 <� 2 � 2 � 2 <� � � � <� n � n � n:

We use these partial orders to de�ne statistics on elements of C3xSn. The number

of modi�ed C3xSn-descents is given by

desW 0(�) = jfi : 1 � i � n� 1; �i >�0 �i+1gj+ �(�(�n) = �2):

If an element � = �1�2 � � � �n is divided into segments of lengths �1; �2; : : : ; �l(�)

for some � ` n, then the number of modi�ed C3xSn �-descents is the number of
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modi�ed descents, desW 0;�, which occur with both i and i+1 in the same segment.

The number of modi�ed C3xSn-inversions is given by

invW 0(�) = invW (�) = jf(i; j) : 1 � i < j � n; �i >� �jgj:

If we write � in cyclic form as

� = (�11; �12; : : : ; �1l1 )(�21; �22; : : : ; �2l2) � � � (�k1; �k2 ; : : : ; �klk ), then the number

of modi�ed C3xSn-descedances is given by

deW 0(�) =

kX
i=1

�
jfj : 1 � j � li � 1; �ij >�0 �ij+1gj+ �(�ili >�0 �i1)

�
:

We de�ne modi�ed versions of �W and �W as follows.

De�nition A.1. De�ne the homomorphism �W 0 : �W3
�! Q[x] on the elemen-

tary basis by

�W 0(en(X + Y + Z)) =
(1� x)n�1 + (1 � x)n�1 + x(x� 1)n�1

3nn!
;

�W 0(en(X + �Y + �2Z)) =
(1� x)n�1 + �(�� �x)n�1 + �2x(�2x� �2)n�1

3nn!
;

and

�W 0(en(X + �2Y + �Z)) =
(1� x)n�1 + �2(�2 � �2x)n�1 + �x(�x� �)n�1

3nn!
:

De�nition A.2. De�ne the homomorphism �W 0 : �W3
�! (Q[q])[x] on the ele-

mentary basis by

�
W 0(en(X + Y + Z) =

q(
n

2
) ((1� x)n�1 + (1 � x)n�1 + x(x� 1)n�1)

3nn!
;

�
W 0(en(X + �Y + �2Z) =

q(
n

2
) ((1� x)n�1 + �(�� �x)n�1 + �2x(�2x� �2)n�1)

3nn!
;

and

�
W 0(en(X + �2Y + �Z) =

q(
n

2
) ((1� x)n�1 + �2(�2 � �2x)n�1 + �x(�x� �)n�1)

3nn!
:
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We are now ready to state the results for this modi�ed version.

When �W 0 is applied to the homogeneous basis we have the following. Note

that here, � ` n.

3nn!�W 0(hn(X + Y + Z)) =
X

�2C3xSn

xdesW 0 (�):

3nn!�W 0(hn(X + �Y + �2Z)) =
X

�2C3xSn

�(�)xdesW 0(�):

3nn!�W 0(hn(X + �2Y + �Z)) =
X

�2C3xSn

�(�)xdesW 0 (�):

3nn!�W 0(h�(X + Y + Z)) =
X

�2C3xSn

xdesW 0;�(�):

3nn!�W 0(h�(X + �Y + �2Z)) =
X

�2C3xSn

�(�)xdesW 0;�(�):

3nn!�W 0(h�(X + �2Y + �Z)) =
X

�2C3xSn

�(�)xdesW 0;�(�):

For the q-analogs, if we apply �W 0 to the homogeneous basis, the results are as

follows. Again, � ` n.

3n[n]!�
W 0(hn(X + Y + Z)) =

X
�2C3xSn

xdesW 0 (�)qinvW 0(�):

3n[n]!�
W 0(hn(X + �Y + �2Z)) =

X
�2C3xSn

�(�)xdesW 0(�)qinvW 0(�):

3n[n]!�
W 0(hn(X + �2Y + �Z)) =

X
�2C3xSn

�(�)xdesW 0 (�)qinvW 0(�):

3n[n]!�
W 0(h�(X + Y + Z)) =

X
�2C3xSn

xdesW 0;�(�)qinvW 0(�):

3n[n]!�W 0(h�(X + �Y + �2Z)) =
X

�2C3xSn

�(�)xdesW 0;�(�)qinvW 0(�):

3n[n]!�
W 0(h�(X + �2Y + �Z)) =

X
�2C3xSn

�(�)xdesW 0 ;�(�)qinvW 0(�):
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When �W 0 is applied to the power basis the result is

3nn!

z�z�z�
�W 0(p�(X)p�(Y )p�(Z)) =

X
�2C(�;�;�)

xdeW 0(�):

For the q-analog, when �
W 0 is applied to the power basis, the result is

3n[n]!�
W 0(p�(X)p�(Y )p�(Z)) =

X
�2C3xSn(�;�;�)

�(�n)=1;�

xdesW 0 ;(�[�[�)(�)qinvW 0(�)

l(�)Y
i=1

�
x1�ti(�)

�
xti(�) � (x� 1)ti(�)

��

�

l(�)Y
i=1

�
x1�ui(�)

�
xui(�) � (x� 1)ui(�)

�� l(�)Y
i=1

�
x1�vi(�)

�
xvi(�) � (x� 1)vi(�)

��

+
X

�2C3xSn(�;�;�)

�(�n)=�2

xdesW 0;(�[�[�)(�)�1qinvW 0(�)

l(�)Y
i=1

�
x+ ((2ti(�) + 1)x � 1) (1� x)ti(�)

�

�

l(�)Y
i=1

�
x+ ((2ui(�) + 1)x� 1) (1 � x)ui(�)

�
l(�)Y
i=1

�
x+ ((2vi(�) + 1)x� 1) (1 � x)vi(�)

�
;

where C3xSn(�; �; �) is the set of all � = �1; �2; : : : ; �n 2 C3xSn such that if � is

broken up into segments of lengths �1; �2; : : : ; �l(�), �1; �2; : : : ; �l(�),

�1; �2; : : : ; �l(�), in that order, then each segment corresponding to a part of � has

total sign 1, each segment corresponding to a part of � has total sign �, and each

segment corresponding to a part of � has total sign �2, and where ti(�), ui(�), and

vi(�) denote the lengths of the co�nal decreasing sequence of elements of the same

type in the segment of � corresponding to �i, �i, and �i, respectively.
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