Printable PDF
Department of Mathematics,
University of California San Diego

****************************

Math 243: Functional Analysis Seminar

Amos Nevo

University of Chicago/Technion

Analysis on spaces with exponential volume growth

Abstract:

We consider ball averages on discrete groups, and associated Hardy-Littlewood maximal operator, with the balls defined by invariant metrics associated with a variety of length functions. Under natural assumptions on the rough radial structure of the group under consideration, we establish a maximal inequality of weak-type for the Hardy-Littlewood operator. These assumptions are related to a coarse radial median inequality, to almost exact polynomial-exponential growth of balls, and to the rough radial rapid decay property. We give a variety of examples where the rough radial structure assumptions hold, including any lattice in a connected semisimple Lie group with finite center, with respect to the Riemannian distance on symmetric space restricted to an orbit of the lattice. Other examples include right-angled Artin groups, Coxeter groups and braid groups, with a suitable choice of word metric. For non-elementary word-hyperbolic groups we establish that the Hardy-Littlewood maximal operator with respect to balls defined by a word metric satisfies the weak-type (1,1)-maximal inequality, which is the optimal result. This is joint work with Koji Fujiwara, Kyoto University.

January 20, 2026

11:00 AM

APM 6402

Research Areas

Functional Analysis / Operator Theory

****************************