Department of Mathematics,
University of California San Diego
****************************
Mathematics Colloquium
Professor Amos Nero
University of Chicago/Technion
New directions and some effective optimal results in Diophantine approximation on homogeneous spaces
Abstract:
Our set up will consist of a countable group acting on a metric space with dense orbits. Our goal will be to develop effective gauges that measure how dense such orbits actually are, or equivalently how efficient is the approximation of a general point in the space by the points in the orbit. We will describe several such gauges, whose definitions are motivated by classical Diophantine approximation, and are related to approximation exponents, discrepancy and equidistribution. We will then describe some of the (non-classical) examples we aim to analyze, focusing mainly on certain countable subgroups of the special linear or affine group, or of the groups of isometries of hyperbolic spaces, acting on some associated homogeneous spaces. In this set-up it is possible to establish optimal effective Diophantine approximation results in certain cases. We will very briefly indicate some ingredients of the methods involved, keeping the exposition as accessible as possible. We will also indicate some of the many challenging open problems that this circle of questions present. Based partly on previous joint work with Anish Ghosh and Alex Gorodnik, and partly on recent work with Mikolaj Fraczyk and Alex Gorodnik.
Host: Tianyi Zheng
January 22, 2026
4:00 PM
APM 6402
****************************

