##### Department of Mathematics,

University of California San Diego

****************************

### Math 292- Topology Seminar

## Marco Marengon

#### UCLA

## A generalization of Rasmussen's invariant, with applications to surfaces in some four-manifolds

##### Abstract:

Building on previous work of Rozansky and Willis, we generalise Rasmussen's s-invariant to links in connected sums of $S^1 \times S^2$. Such an invariant can be computed by approximating the Khovanov-Lee complex of a link in $\#^r S^1 \times S^2$ with that of appropriate links in $S^3$. We use the approximation result to compute the s-invariant of a family of links in $S^3$ which seems otherwise inaccessible, and use this computation to deduce an adjunction inequality for null-homologous surfaces in a (punctured) connected sum of $\bar{CP^2}$. This inequality has several consequences: first, the s-invariant of a knot in the three-sphere does not increase under the operation of adding a null-homologous full twist. Second, the s-invariant cannot be used to distinguish $S^4$ from homotopy 4-spheres obtained by Gluck twist on $S^4$. We also prove a connected sum formula for the s-invariant, improving a previous result of Beliakova and Wehrli. We define two s-invariants for links in $\#^r S^1 \times S^2$. One of them gives a lower bound to the slice genus in $\natural^r S^1 \times B^3$ and the other one to the slice genus in $\natural^r D^2 \times S^2$ . Lastly, we give a combinatorial proof of the slice Bennequin inequality in $\#^r S^1 \times S^2$.

### March 10, 2020

### 10:30 AM

### AP&M 7218

****************************