Printable PDF
Department of Mathematics,
University of California San Diego


Postdoc Seminar

Shuang Liu


Level set simulations of cell polarity and movement


We develop an efficient and accurate level set method to study numerically a crawling eukaryotic cell using a minimal model. This model describes the cell polarity and movement using a reaction-diffusion system coupled with a sharp-interface model. 


We employ an efficient finite difference method for the reaction-diffusion equations with no-flux boundary conditions. This results in a symmetric positive definite system, which can be solved by the conjugate gradient method accelerated by preconditioners. To track the long-time dynamics, we employ techniques of the moving computational window to keep the efficiency. Our level-set simulations capture well the cell crawling, the straight line trajectory, the circular trajectory, and other features. 


Our efficient and accurate computational techniques can be extended to a broad class of biochemical descriptions of cell motility, for which problems are posed on moving domains with complex geometry and fast simulations are very important. This is a joint work with Li-Tien Cheng and Bo Li.

May 19, 2022

3:15 PM

AP&M B402A