##### Department of Mathematics,

University of California San Diego

****************************

### Math 196 - Student Colloquium

## Radoslav Fulek

#### UC San Diego

## Polygons with Prescribed Angles in 2D and 3D

##### Abstract:

We consider the construction of a polygon $P$ with $n$ vertices whose turning angles at the vertices are given by a sequence $A=(\alpha_0,\ldots, \alpha_{n-1})$, $\alpha_i\in (-\pi,\pi)$, for $i\in\{0,\ldots, n-1\}$. \\ \\ The problem of realizing $A$ by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an \emph{angle graph}. \\ \\ In 2D, we characterize sequences $A$ for which every generic polygon $P\subset \mathbb{R}^2$ realizing $A$ has at least $c$ crossings, for every $c\in \mathbb{N}$, and describe an efficient algorithm that constructs, for a given sequence $A$, a generic polygon $P\subset \mathbb{R}^2$ that realizes $A$ with the minimum number of crossings. \\ \\ In 3D, we describe an efficient algorithm that tests whether a given sequence $A$ can be realized by a (not necessarily generic) polygon $P\subset \mathbb{R}^3$, and for every realizable sequence the algorithm finds a realization.

### December 11, 2020

### 2:00 PM

### Contact Glenn Tesler for Zoom link

****************************