Printable PDF
Department of Mathematics,
University of California San Diego

****************************

Math 218 - Seminar on Mathematics for Complex Biological Systems

Andreas Carlson

Department of Mathematics, University of Oslo, Norway

Protein Organisation during Immune Cell Adhesion and Energy Barriers during Formation of Intraluminal Vesicles

Abstract:

I will present two examples of dynamic cell-membrane processes we have been working on, highly inspired by recent experimental results, and described by combining scaling, mathematical modelling and numerical simulations. i) \underline{Immunological synapse}: The cellular basis for the adaptive immune response during antigen recognition relies on a specialized protein interface known as the immunological synapse. We propose a minimal mathematical model for the dynamics of the immunological synapse that encompass membrane mechanics, hydrodynamics and protein kinetics. Simple scaling laws describe the time and length scales of the self-organizing protein clusters as a function of membrane stiffness, rigidity of the adhesive proteins, and the fluid flow in the synaptic cleft. ii) \underline{Formation of Intraluminal Vesicles}: The endosome is a membrane-bound compartment, which encapsulates cargo as it matures into a multi-vescular body that regulate cell activity as well as enabling communication with surrounding cells. The cargo encapsulation process take place as Intraluminal Vesicles form at the endosome membrane, a process in part regulated by the Endosomal Sorting Complex Required for Transport (ESCRTs). We develop a membrane model including membrane elasticity, protein crowding (steric repulsions) and gaussian bending rigidity, which suggests that the vesicles form passively only needing to overcome a small energy barrier.

Hosts: Li-Tien Cheng, Bo Li, and Ruth Williams

May 9, 2019

2:00 PM

AP&M 6402

****************************