Printable PDF
Department of Mathematics,
University of California San Diego


Math 243, Functional Analysis

Aldo Garciaguinto

Michigan State University

Schreier's Formula for some Free Probability Invariants


Let $G\stackrel{\alpha}{\curvearrowright}(M,\tau)$ be a trace-preserving action of a finite group $G$ on a tracial von Neumann algebra. Suppose that $A \subset M$ is a finitely generated unital $*$-subalgebra which is globally invariant under $\alpha$. We give a formula relating the von Neumann dimension of the space of derivations on $A$ valued on its coarse bimodule to the von Neumann dimension of the space of derivations on $A \rtimes^{\text{alg}}_\alpha G$ valued on its coarse bimodule, which is reminiscent of Schreier's formula for finite index subgroups of free groups. This formula induces a formula for $\dim \text{Der}_c(A,\tau)$ (defined by Shlyakhtenko) and under the assumption that $G$ is abelian we obtain the formula for $\Delta$ (defined by Connes and Shlyakhtenko). These quantities and the free entropy dimension quantities agree on a large class of examples, and so by combining these results with known inequalities, one can expand the family of examples for which the quantities agree.

Host: Priyanga Ganesan

May 14, 2024

11:00 AM

APM 7218 and Zoom (meeting ID:  94246284235)