##### Department of Mathematics,

University of California San Diego

****************************

### Math 248 - Real Analysis

## Mihai Tohaneanu

#### Johns Hopkins

## The Strauss conjecture on black holes

##### Abstract:

The Strauss conjecture for the Minkowski spacetime in three dimensions states that the semilinear equation \[ \Box u = |u|^p, \quad u(0)=\epsilon f, \quad \partial_t u(0)=\epsilon g \] has a global solution for all $f$ and $g$ smooth, compactly supported and $\epsilon$ small enough if $p > 1+\sqrt 2$. We prove a similar result in the context on Schwarzschild and Kerr with small angular momentum spacetimes. This is joint work with H. Lindblad, J. Metcalfe, C. Sogge, and C. Wang

Host: Jacob Sterbenz

### May 29, 2013

### 1:00 PM

### AP&M 5829

****************************