Department of Mathematics,
University of California San Diego
****************************
Math 209 - Number Theory Seminar
Annie Carter
UCSD
Two-variable polynomials with dynamical Mahler measure zero
Abstract:
Introduced by Lehmer in 1933, the classical Mahler measure of a complex rational function $P$ in one or more variables is given by integrating $\log|P(x_1, \ldots, x_n)|$ over the unit torus. Lehmer asked whether the Mahler measures of integer polynomials, when nonzero, must be bounded away from zero, a question that remains open to this day. In this talk we generalize Mahler measure by associating it with a discrete dynamical system $f: \mathbb{C} \to \mathbb{C}$, replacing the unit torus by the $n$-fold Cartesian product of the Julia set of $f$ and integrating with respect to the equilibrium measure on the Julia set. We then characterize those two-variable integer polynomials with dynamical Mahler measure zero, conditional on a dynamical version of Lehmer's conjecture.
March 3, 2022
9:00 AM
Zoom *only*; see
https://www.math.ucsd.edu/~nts
****************************